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Abstract

Use of the Bayesian decision-theoretic approaches to obtain optimal stopping rules for clinical

trial designs requires a method known as Backward Induction. However, implementation

of Backward Induction, save for simple trial designs, is generally impossible due to the

computational difficulties associated with it. In this thesis our general research topic is the

numerical approximation of Backward Induction in three different clinical trial designs. Berry

and Chih-Hsiang (1988), Carlin, Kadane and Gelfand (1998), Brockwell and Kadane (2003)

and Christen, Müller, Wathen y Wolf (2004) have addressed the same problem under other

clinical trial designs. The first two trial designs that we study seem to be efficient clinically

but surprisingly have not been considered in the past. First we consider a multiple-arm

trial comparing k experimental treatments with standard treatment, where patient response

is binary. Our objective here is to propose a novel stopping rule, denoted by τ p, as an

approximation of the optimal stopping rule, using the optimal stopping rule of single-arm

clinical trial obtained by Backward Induction. We use a simulation-based algorithm together

with τ p to estimate the expected utility of continuing. An example of a double-arm clinical

trial where we compare our estimates with exact values obtained by implementing Backward

Induction is presented. Results of this comparison show that our proposed trial design

is a good approximation of the optimal stopping rule. Given that Backward Induction

cannot be implemented for cases where we have more than two treatment arms, we evaluated

our proposed stopping rules by studying its operating characteristics in a three arm trial.

Secondly, we consider a trial design involving two double-arm related trials each comparing

an experimental treatment with a standard treatment, where patients in trial 1 are in a milder

stage of the disease than those in trial 2. Here we aim at eliciting a joint prior distribution

for the unknown success probabilities of each treatment such that we can use data from one

trial to learn about the other. Similarly, we present novel stopping rules that simultaneously

control both trials, commonly borrowing strength from each other to achieve smaller patient

accrual and better performance. Our proposed trial design has the advantage of using less
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patients as well as improving performance. Lastly, we approximate the optimal stopping rule

of one-arm clinical trial where patient response is normal. Our task here is to construct a

grid on the space of the sufficient statistic of unknown parameters and approximate expected

utilities over the grid using exact predictive probabilities. This is important because our

approach provides smooth stopping boundaries with a much less number of grid subdivisions

as opposed to other approaches that use simulation to approximate predictive probabilities.

Moreover, this may save computing time. These approximate trial designs display attractive

properties, through the examples that we take, and hence offer relevant solution to the

problem posed by Backward Induction.
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Resumen

El uso del enfoque Bayesiano basado en teoria de decisión para obtener reglas de paro óptimas

en diseños de ensayos cĺınicos requiere de un metodo llamado Backward Induction. Sin

embargo, la implementación de Backward Induction, salvo diseños simples, es generalmente

imposible, debido a las dificultades computacionales que éste presenta. En esta tesis nuestro

tema general de investigación es aproximar Backward Induction en diferentes diseños de

ensayos cĺınicos. Berry y Chih-Hsian (1988), Carlin, Kadane y Gelfand (1998), Brockwell

y Kadane (2003) y Christen, Müller, Wathen y Wolf (2004) han trabajado en el mismo

problema bajo otros diseños de ensayos cĺınicos. Los primeros dos diseños que consideramos

se ven eficientes clinicamente, pero se sorprende que no haya estudios anteriores de éstos

en el pasado. Primero consideramos un ensayo cĺınico de brazos múltiples, comparando k

tratamientos experimentales con un tratamiento estándar. Asumimos que las respuestas de

los pacientes son binarias. Nuestro objetivo aqúı es proponer una regla de paro, denotada

por τ p, usando la regla de paro óptima para un ensayo cĺınico de un solo brazo obtenido por

Backward Induction. Usamos un algoritmo basado en simulación junto con τ p para estimar

la utilidad esperada de continuar. Presentamos un ejemplo de un ensayo cĺınico de dos

brazos donde comparamos nuestras estimaciones con valores exactos obtenidos por Backward

Induction. Los resultados de esta comparación indican que el diseño de ensayo cĺınico que

proponemos es una buena aproximación al diseño óptimo. Dado que Backward Induction

no se puede implementar para casos donde tenemos más de dos brazos, evaluamos nuestas

reglas de paro propuestas estudiando sus Operating Characteristics. Luego consideramos un

diseño secuencial que involucra dos ensayos clinicos relacionados, donde cada uno compara

un tratamiento experimental con un tratamiento estándar. Se supone que los patientes del

ensayo 1 están menos enfermos que los del ensayo 2. El propósito es asignar una distribución

conjunta a priori a las probabilidades de éxitos desconocidos de cada tratamiento tal que

podamos usar datos de un esayo para aprender del otro. Presentamos una nueva regla

de paro que controla simultaneamente ambos ensayos y que se prestan fuerza uno al otro
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para poder usar un número pequeño de pacientes y lograr un mejor funcionamiento. Por

último, aproximamos la regla de paro óptima para un ensayo cĺınico de un brazo, donde

las respuestas siguien una distribución normal. Construiremos un “grid” en el espacio de

la estad́ıstica suficiente de los parámetros desconocidos y aproximamos la utilidad esperada

sobre el “grid” usando las probabilidades predictivas exactas. Este enfoque es importante,

porque comparado a otros enfoques, obtenemos reglas de paro con fronteras suaves usando

un menor número de subdivisiones mucho menos a las encontradas en la literatura. Además,

puede ser que mejore el tiempo de computación. Los diseños de ensayos que proponemos

muestran una buena aproximación, lo cual veremos en los ejemplos, y por lo tanto ofrecen

una solución alternativa al problema de Backward Induction.
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Chapter 1

Introduction

1.1 Problems in Bayesian analysis of clinical trials

We define a clinical trial as a carefully planned study that evaluates the efficacy of a new

treatment relative to a standard treatment. In most clinical trials data are reviewed se-

quentially as they accumulate to enable reaching a decision to stop the trial early if there

exist sufficient evidence of treatment difference or harmful side-effects. Depending on the

the objective of the study, patient response may be binary or continuous. For example, if a

clinical trial is designed to determine the difference between recovery times for pairs of pa-

tients treated with two competing treatments, then the patient response will be continuous.

Binary responses are preferred in clinical trials where patient recovery takes a short time. A

clinical trial design may have a single treatment arm or multiple treatment arms depending

on the number of new treatments that are to be compared with the standard treatment.

Use of the Bayesian approach in the design and analysis of clinical trials is appealing, because

it enables incorporation of prior expert opinion regarding treatment efficacy into the analysis

1
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and allows for more simplified designs. See Berry (1985, 1987, and 1993) and Spiegelhal-

ter, Freedman and Parmar (1994) for a detailed review of the advantages of the Bayesian

approach to clinical trials. Bayesian decision-theoretic approaches to clinical trials seem

suitable because they enable quantifying the value of patient outcomes using a numerical

measure called utility and hence permits incorporating other factors such as toxicity and cost

of a treatment in making decisions. In the past, Ascombe (1963), Berry and Chih-Hsiang

(1988), Carlin, Kadane and Gelfand (1998), Stallard, Thall and Whitehead (1999), Brock-

well and Kadane (2003), Stallard (2003), Christen, Müller, Wathen and Wolf (2004), just

to name a few, have used decision-theoretic approaches to determine which of the two or

more treatments is the most efficacious in clinical trials. According to a Bayesian sequential

analysis, the decision to terminate or continue at any stage n of a clinical trial is based on

the expected utilities evaluated with respect to future outcomes. This requires the algorithm

called Backward Induction (see DeGroot, 1970, Chapter 12), which starts at the final stage

where the trial must stop and the optimal decisions are obtained for earlier stages working

backwards. Unfortunately, Backward Induction only provides theoretical optimal solutions

to Bayesian sequential problems and, except for very simple examples, is generally infea-

sible to implement due to computational and analytical complexities. Carlin et al.(1998),

Brockwell et al. (2003), Christen et al. (2003), Christen et al. (2004), and Spiegelhalter,

Abrams and Myles (2004, p. 220) have pointed out the computational difficulties associated

with Backward Induction as an obstacle to successful use of the Bayesian decision-theoretic

approaches to sequential analysis. We note that under categorical patient outcome settings

the decision tree grows exponentially as we progress through the interim stages towards the

horizon. The result is a complex decision tree consisting of a huge number of possible future

scenarios that would be extremely difficult to track backwards. Moreover, if we consider

that patient response is continuous and that at any stage past data is summarized by a

sufficient statistic then we have an infinite space where the statistic takes values. Hence

the Backward Induction algorithm becomes impossible to implement. Although numerical

methods for approximating optimal sequential decisions have been developed using the idea
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of discretization of the space in which a summary statistic assumes values into a grid of

points, analyzing sequential clinical trials with multiple arms using the Bayesian approach

is complex. Alternative Bayesian approaches, which will be presented in detail in section

1.3, are based on stopping decisions derived from the posterior probability content of the

parameter of interest.

1.2 The problems

The three problems that we solve in this thesis are presented follows. First, we consider a

multiple-arm clinical trial comparing k experimental treatments t = E1, E2, . . . , Ek with a

standard treatment t = E0. We assume that patient response is binary. We suppose that

the unknown success probabilities, denoted by θj, j = 0, 1, . . . , k, of the k + 1 treatments

are independent and model their initial uncertainty by assigning them prior distributions

πj(θj), j = 0, 1, . . . , k respectively. We let N be the maximum number of patients enrolled

in the trial. At any stage n < N of the trial, we let dn = 0, 1 denote the decisions of

continuing and stopping respectively and tn+1 be the treatment that we choose for future

patients upon stopping or for the next patient if the decision is to continue. Then based on

what we have observed, that is the sequence of observations, xn = (x1, x2, . . . , xn), obtained

from the first n patients upon application of the sequence of treatments tn = (t1, t2, . . . , tn),

the object is to find the pair in {(dn, tn+1) : dn = 0, 1, tn+1 = E0, E1, . . . , Ek} that maximizes

the expected value of of our proposed utility function u(.), where expectation is taken with

respect to future observations xn1 , xn+2, . . . , xN+1 and i = N + 1 represents a future patient

outside that trial. We note that for the same reason mentioned in the previous section the

exact implementation of Backward Induction is impossible for cases where k ≥ 3.

We state the second problem that we consider as follows. Suppose we have a double-arm

clinical trial designed to evaluate the efficacy of an experimental treatment E with a standard
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treatment S, where patients are divided in two cohorts, marked 1 and 2. We assume that

the patient response is binary. We suppose that patient in cohort 1 are in a milder stage of

the disease than those in cohort 2. Let θ and θ′ denote the unknown success probabilities of

treatment E in cohorts 1 and 2 respectively. Similarly, we let π and π′ be the unknown success

probabilities of the standard treatment S in cohorts 1 and 2 respectively. We model the initial

uncertainty about each of the pair (θ, θ′) and (π, π′) by assigning a joint prior distribution,

p(y, w), defined over the support 0 < w < y < 1. We may also regard this problem as one

trial divided into two related (sub)trials, one for each cohort. Let N and M be the maximum

numbers of patients enrolled in trials 1 and 2 respectively. We use xi and ti to denote response

and treatment respectively of the ith patient, i = 1, 2, . . . , N in trial 1. Similarly, we use

x′j and t′j to denote response and treatment respectively of the jth patient, j = 1, 2, . . . ,M

in trial 2. Suppose the two trials are at stages n and m respectively and that d′m = 0, 1

correspond to the decisions that we may take in trial 2. Under this setting the optimal

sequential decision is obtained by finding the pairs (dn, d
′
m) ∈ {(1, 1), (1, 0), (0, 1), (0, 0)}

and (tn+1, t
′
m+1) ∈ {(E, E), (E, S), (S, E), (S, S)} that maximize the expected value of our

proposed utility function, u(.), for the entire trial. We note that the ordering of the success

probabilities enables using data from one trial to learning about the other. This means

at some stages n and m where the decision is to continue both trias, we may proceed by

confining patient entry in one trial and use the accumulating data to learn about the other

trial.

We solve the above two problems by proposing a novel stopping rule and a pair of novel

stopping rules, respectively, using the optimal stopping rule of a single-arm clinical trial

design obtained by Backward Induction. A detailed description of the construction of each

of the stopping rules and their evaluation for better understanding will be presented in

chapters 3 and 4 respectively.

Finally, we consider a one-arm clinical trial where an experimental treatment E is compared

to a standard treatment S where we assume that under treatments E and S the patient
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responses are x|t = E ∼ N(µE, λE) and x|t = S ∼ N(µS, λS) respectively. We will consider

two cases: one where we assume that µS is unknown and λ known, and the other where both

µ and λS are unknown. We assign a conjugate normal or normal-gamma prior distribution to

the unknown parameter (or parameters) depending on whether λE is known or not. At any

stage n of the trial if the decision is to continue (dn = 0), then the next patient is assigned to

treatment E. However, if the decision is to stop, any of the two treatments may chosen. The

object is to find the pair (dn, tn+1) that maximizes the expected utility, where expectation is

taken with future observations. We construct a grid over the space where a sufficient statistic

takes values and implementing Backward Induction to obtain the gridding approximation

of the expected utility over the grid. We solve this problem by implementing the gridding

method using the exact predictive probabilities; unlike in previous implementation of this

method (see Brockwell et al. 2003).

1.3 Literature review

Sequential methods for use in clinical research stems from an early publication by Armitage

(1975). He presents classical sequential methods that we do not use in this thesis. However,

a brief review of these methods may be useful for a general presentation of the subject.

According to these methods at any interim stage data is reviewed by carrying out a two-

sided significance test so that if the absolute value of the test statistic is greater than some

fixed value, the trial stops and evidence of treatment difference is declared. Otherwise the

trial continues. However, if the trial continues up to the last stage, then one stops without

claiming evidence of treatment difference. Berry (1985, 1987, and 1993) and Spiegelhalter,

Freedman and Parmar (1994) have pointed out the advantages of the Bayesian approaches

over the classical methods with regard to sequential analysis of clinical trials. Ascombe

(1963) while reviewing Armitage’s book argued for the use of the Bayesian decision-theoretic

approaches. Pocock (1977) uses the same approach and proposes a group sequential designs
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where patients are divided into equal-sized groups so that an interim analysis is carried out

after each group is observed. He discusses these designs for normal and other types of patient

response. Such group sequential designs have been used in decision-theoretic approach to

reduce the computational burden associated by Backward Induction ( See Carlin et al. 1998

and Brockwell et al. 2003). Other examples of group sequential designs are found in Elfring

and Schultz (1973), Freedman, Lowe and Macaskill (1984) and Demets and Ware (1980). See

the book by Whitehead (1997) for a more detailed presentation on the design and analysis

of sequential clinical trials using the frequentist approaches.

1.3.1 Approaches for implementing Backward Induction in clinical

trials

With the discovery of cheap computing power a number of researchers have proposed com-

putational methods for solving different Bayesian sequential problems where Backward In-

duction is implemented via estimation or approximation of expected utility. Carlin et al.

(1998) proposed a simulation-based algorithm for finding the optimal sequential decision at

any stage of a sequential clinical trial design comparing an experimental treatment with a

placebo, where patient outcome is assumed continuous and data are monitored at K pre-

determined interim stages. The algorithm, as an alternative approach, drastically reduces

the computational complexity associated with backward induction, however, it is limited to

group-sequential setting where patient outcomes are normal with known variance and allows

few interim looks. As few as K = 2 interim stages were used to compare their algorithm

with backward induction. Brockwell and Kadane, (2003) considers the same design as Carlin

et al. (1998) and propose a more general algorithm for implementing Backward Induction.

The algorithm consists of constructing a grid in the space in which a summary statistic

assumes values and evaluating the expected losses corresponding to the decisions stopping

and continuing over the grid. Surprisingly, they use a simulation method to calculate the
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expected losses for continuing over the grid when it could have been easier to use the com-

mon posterior predictive density of future outcomes, which looks more accurate. Another

example where gridding method has been used is found in Berry and Chih-Hsiang (1988).

Christen et al. (2004) considered a more complex clinical trial design with multiple treat-

ment arms where patient response is categorical and at any stage a set of non-dominated

treatments is obtained. They work with a set of utility functions. Their trial design is such

that if the decision is to continue, a treatment selected randomly from the non-dominated set

of treatments is assigned to the next patient. Otherwise the trial stops and the set of non-

dominated treatments is reported. Unlike their trial design, any of the our trial designs work

with one utility function throughout, and at any stage of the trial we may stop or continue

with one treatment that maximizes the expected utility. They have used a 2-step look-ahead

procedure (see Berger 1985, Chapter 7) to implement Backward Induction. We use the same

utility function, that they propose, throughout this thesis. One common achievement in all

these articles is that the mentioned complexity associated with Backward Induction is elim-

inated by collapsing down the exponentially growing decision tree to a linearly growing one.

Examples where optimal sequential decisions are evaluated by a complete implementation of

Backward Induction in clinical trial designs with at most two treatment arms and assuming

binary patient responses are provided by Wathen and Christen (2004), Stallard et al. (1999),

Lewis and Berry (1994) and Petkau (1978), Stallard (2003) proposes decision-theoretic de-

signs where a number of potential new treatments are compared with a standard treatment

in a series of single-arm phase II clinical trials. In each successive single-arm trial Backward

Induction is used to obtain optimal strategies. This may be expensive and may be avoided

by using the multiple-arm trial design similar to the one that we propose in this thesis.
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1.3.2 Other Bayesian approaches to clinical trials

Here we briefly describe other Bayesian approaches to clinical trials that we do not consider

in this thesis but complements the general framework and may provide documented examples

of some of our trial designs. A number of researchers have developed alternative Bayesian

approaches to sequential clinical trials where the boundaries of stopping rules are evaluated

based on the posterior probability content of the unknown treatment success probability.

They avoid the decision-theoretic approaches that we use in this thesis by pointing out the

extreme difficulty in implementing Backward Induction and that of choosing meaningful

and appropriate utility functions. The probability-only approaches have been used mostly

in single-arm trial designs with univariate or multivariate discrete responses. The decision

procedure is described briefly as follows. Suppose we consider the case of univariate treatment

response. A decision criteria at any stage of the trial would be of the following form. At

the beginning of the trial the upper and the lower decision cutoffs, denoted by PL and

PU respectively, are specified. Suppose that θS and θE denote the success probabilities of

treatments S and E respectively. Let δ be the least targeted improvement over S. Then the

trial terminates if the posterior probability Pr(θS + δ < θE | data) is outside the interval

(PL, PU). Otherwise the trial continues. On the other hand if the treatment response is

multivariate, then the monitoring criteria with respect to each compound event of interest is

derived from the marginal posterior probability of that event. Berry (1989), Thall and Simon

(1994), and Thall,et al. (1995) have used these methods to implement Bayesian sequential

designs for single-arm clinical trials.

Other probability-only approaches are based either on the relative position of credible interval

of the treatment effect relative to some boundary or the Bayesian test of some classical

hypotheses. Examples are found in Spiegelhalter et al. (1994), Choi and Pepple (1989),

Cornfield (1966) and the book by Spiegelhalter, Abrams and Myles (2004). This book not

only presents a detailed coverage of the probability-only approaches but also describes the
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general Bayesian approaches to clinical trials, outlining prior elicitation, ethical issues and

justifying randomization.

1.4 Outline of the thesis

In Chapter 2, we describe the general decision-based Bayesian approach to sequential clinical

trials and present a simulation-based algorithm that, for a given stopping rule, permits

finding an estimate of the expected utility in clinical trial designs with multiple arms in the

last section. In chapter 3, we approximate the optimal stopping rule obtained by Backward

Induction by proposing a novel stopping rule, denoted τ p, whose construction is based on

the optimal stopping rule of single-arm clinical trial design. The expected utility estimating

algorithm enables us to compare our proposed stopping rule τ p with the optimal stopping rule

in a double-arm clinical trial design. We note that it is common practice to validate stopping

rules constructed from a Bayesian view point by evaluating their frequentist properties (see

Thall et al. (1994,1995), Stallard et al. (1999), Christen el al. (2004)). For this reason we

validate our clinical trial designs with more than two arms, where Backward Induction is

impossible to implement, by investigating the operating characteristics of a three-arm clinical

trial.

Similarly, we consider two related trials in Chapter 4, each comparing an experimental

treatment with a standard treatment, and propose a pair novel proposed stopping rules for

approximating the optimal sequential decision at any interim stages. As in Chapter 3, we

evaluate our proposed trial design by studying its operating characteristics.

Finally, in Chapter 5, we use a gridding method to approximate the sequential optimal

decision at any stage of a one-arm sequential clinical trial where patient response is considered

continuous. We use the posterior predictive density to compute the expected utility of
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continuing over the grid unlike other approaches where a simulation method has been used.

Chapter 6 presents a discussion of our findings.



Chapter 2

Bayesian Sequential Decision

2.1 Introduction

The basic elements of a Bayesian sequential decision problem are a set of possible decisions,

a utility function for assessing the consequences of all possible decisions and the prior distri-

butions for the parameters of interest. At any interim stage of a sequential procedure, the

optimal sequential decision is obtained by choosing a decision that maximizes the expected

value of a utility function, where expectation is taken with respect to future observations.

This requires a standard method called Backward Induction (DeGroot, 1970), in which one

must start at the last stage and evaluate expected utilities backwards. This method can be

extremely difficult to implement if at some stage one has to consider a huge number of future

scenarios.

The outline of this chapter is as follows. We describe the Bayesian sequential decision prob-

lem with reference to a multiple-arm clinical trial comparing k experimental treatments with

a standard treatment in section 2 and briefly outline its solution via the Backward Induction

11
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method in section 3. In sections 4 and 5, we define a stopping rule and the expected utility

determined by a stopping rule respectively. In section 6, we present the implementation of

Backward Induction for a single-arm trial design. We describe a simulation-based algorithm

for estimating expected utility in section 7. This chapter is a preparation for the more

original work of Chapters 3, 4 and 5.

2.2 The Utility Function

We consider a clinical trial comparing k experimental treatments E1, E2, . . . , Ek with a stan-

dard treatment E0 where patient response, x, is binary. Suppose aj and bj are real numbers

in the interval [0, 1] with aj < bj, j = 0, 1, . . . , k, we define the utility v(Ej, x) of observing

a response x under a given treatment Ej, j = 0, 1, . . . , k as

v(Ej, x) =

 aj if x = 0;

bj if x = 1.
(2.1)

We note that the two values aj and bj are assumed fixed at the beginning of a trial and

may be determined based on the level of toxicity, the cost of treatment Ej and other factors

that may be considered relevant. Suppose the trial stops at stage n. We have the sequence

of observations xn = (x1, x2, . . . , xn) from the first n patients and a sequence of respective

treatments tn = (t1, t2, . . . , tn). We define the utility function u for the entire trial, based on

the single utility function v in (2.1), as

u(dn = 1, tn+1, tn,xN+1, v) =

αv(tn+1, xN+1) +
(1− α)

N

{
n∑

i=1

v(ti, xi) +
N∑

i=n+1

v(tn+1, xi)

}
(2.2)

where α = 1
N+1

, xn+1, . . . , xN+1 are the future observations under treatment tn+1 and i =

N +1 indicates the inclusion of a future patient outside the trial. That is, u(.) is the weighted

average of the utilities v(.) of each of the patients enrolled in the trial and the utility of the
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treatment chosen for future patients. At any stage n of the trial we have to choose between

the decisions of stopping (dn = 1) and continuing (dn = 0) by comparing their respective

expected utilities. If the trial stops, then the best treatment is chosen for al future patients;

otherwise the best treatment is allocated to the next patient. The best treatment t∗n+1 is

obtained by maximizing the expected utility

Un(dn = 1, tn+1,xn) = E{u(dn = 1, tn+1,xN+1, v) | tn+1,xn}, (2.3)

where the expectation is taken with respect to the future observations. The evaluation of

the above expectation requires the joint posterior predictive distribution of future observa-

tions xn+1, . . . , xN+1. However, by noting that u(.) is a weighted sum of v(., xi) and that

xn+1, . . . , xN+1 are identically distributed, the expected utility Un(.) in (2.3) can be evaluated

by using the common posterior predictive distribution p(x | tn+1,xn) as

Un(dn = 1, tn+1,xn) = (1− α)
n∑

i=1

v(ti, xi) +
∑
x=0,1

(α + (1− α)
N − n

N
)

×v(tn+1, x)p(x | tn+1,xn). (2.4)

2.3 Backward Induction

The Backward Induction algorithm begins at the last stage N where the trial must stop and

the optimal decision is chosen by maximizing the expected utility. For any possible sequences

of treatments and observations, (tN ,xN), at stage N , the maximum expected utility, denoted

by U∗
N(tN ,xN), is obtained as

U∗
N(tN ,xN) = max

tN+1=E0,E1,...,Ek

UN(dN = 1, tN+1, tN ,xN). (2.5)
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By Bayesian sequential analysis, the expected utility of continuing the trial with treatment

tn+1 at any stage n < N is given by

Un(dn = 0, tn+1, tn,xn) = U∗
n+1(tn+1,xn, xn+1 = 0)(1− p(xn+1 = 1 | tn+1,xn))

+U∗
n+1(tn+1,xn, xn+1 = 1)p(xn+1 = 1 | tn+1,xn). (2.6)

Therefore the maximum expected utility, U∗
n, is

U∗
n(tn,xn) = max

dn=0,1
{ max

tn+1=E0,E1,...,Ek

Un(dn, tn, xn, tn+1)}. (2.7)

We note that, at any stage n, computing Un(dn = 0, tn+1, tn,xn) requires knowing U∗
n+1(tn+1,

xn, xn+1) for every possible outcome xn+1 under treatment tn+1 at the next stage n + 1

and hence, working backwards, U∗
n(.) can be computed recursively for earlier interim stages

n = N − 1, N − 2, . . . , 1, 0. Due to the fact that the decision tree, for our trial design with

binary patient outcomes, grows exponentially as the number of interim stages increases and

hence resulting into a huge number of future scenarios, backward induction is impossible to

implement when we have more than two treatment arms.

2.4 Stopping Rule

The concept of a stopping rule is concerned with choosing a given decision from a set of

possible decisions at any stage n of a sequential design based on the observed sequence

of observations xn = (x1, x2, . . . , xn). We define a stopping rule relative to our sequential

clinical trial design as follows. Suppose that at stage n of the trial we let the sequences

of binary observations and treatments (tn,xn) be summarized by the sufficient statistic

(n0, n1, . . . , nk, s0, s1, . . . , sk), where nj and sj, j = 0, 1, . . . , k respectively represent the

number of observations and the number of observed successes due to treatment Ej. For the

purpose of improving our presentation we will use the symbols n(k) and s(k) to denote the

vectors (n0, n1, . . . , nk) and (s0, s1, . . . , sk) respectively. We note that for every n and j, the
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pair (nj, sj) ∈ (0, 1, . . . , n)2 is the sufficient statistic for the marginal posterior distribution

of θj and is such that sj ≤ nj and
∑k

j=0 ni = n. This implies that the sufficient statistic

(s(k), n(k)) belongs to a 2k + 2 dimensional space {0, 1, . . . , n}2k+2. We therefore define a

stopping rule as a sequence of functions

τn : {0, 1, . . . , n}2k+2 → {0, 1} (2.8)

such that the trial is stopped when τn(s(k), n(k)) = 1 after observing (s(k), n(k)); otherwise

the (n + 1)th observation is made.

For example, suppose that at any stage n of a double arm clinical trial (k = 1) comparing a

new treatment E1 with a standard treatment E0 the observed data (tn,xn) is summarized

by the sufficient statistic (s(1), n(1)). As an example we may define a stopping rule τ e as

τ e
n(s(1), n(1)) =

 0 if | s1 − s0 |≤ 2;

1 otherwise.
(2.9)

At any stage n of our sequential multiple-arm clinical trial design the optimal stopping rule is

obtained by computing the expected utilities of the two decisions of stopping and continuing

the trial based on (s(k), n(k)) and choosing the decision that maximizes the expected utility.

2.5 The expected utility determined by a stopping rule

We note that the utility function in (2.2) depends on the observed data (xn, tn) only

through the sufficient statistic (s(k), n(k)) and hence any expected utility can be expressed

in terms of (s(k), n(k)). Let the expected utility of stopping in (2.4) be denoted by Un(dn =

1, s(k), n(k), tn+1). If at any stage n of the trial a given stopping rule τ indicates stopping,

then the expected utility determined by τ , denoted by U
(τ)
n (s(k), n(k), tn+1), is equal to the
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expected utility of stopping. On the other hand, if τ indicates continuing the trial then we

define U
(τ)
n (s(k), n(k), tn+1) as follows.

Suppose we summarize the possible sequences of observations after stage n by the sufficient

statistic (r(k), m(k)) where r(k) = (r0, r1, . . . , rk), m(k) = (m0, m1, . . . ,mk) and
∑k

j=0 mh
j =

mj < N − n. We define mj and rj as the number of observations and observed successes

respectively, for treatment Ej, j = 0, 1, . . . , k. Suppose that τ = 1 upon observing the

values (rh
(k), m

h
(k)), h = 1, 2, . . . , L of (r(k), m(k)). We note that both the past data (s(k), n(k))

and what we observe after stage n are considered while evaluating the value of τ . If we let

Ph = Pr(r(k) = rh
(k), m(k) = mh

(k)) represent the probability of observing (rh
(k), m

h
(k)), h =

1, . . . , L and pj = Pr(x = 1 | s(k), n(k), tn+1 = Ej) denote the posterior success probability of

treatment Ej, j = 0, 1, . . . , k based on past data, then we have Ph =
∏k

j=0 p
rh
j

j (1− pj)
mh

j−rh
j .

Using mathematical induction we can show that

L∑
h

Ph =
L∑

h=1

k∏
j=0

p
rh
j

j (1− pj)
mh

j−rh
j = 1 (2.10)

holds for all integers L ≥ 2.

Without loss of generality we let τ (L) be any stopping rule that indicates stopping after

stage n for L values of (r(k), m(k)). If L = 2, then τ (2) = 1 upon observing xn+1 under

some treatment tn+1 = Ej, irrespective of the outcome. We observe (rh
(k), m

h
(k)), h = 1, 2

with probabilities P1 = Pr(r(k) = r1
(k), m(k) = m1

(k)) = Pr(xn+1 = 1 | s(k), n(k), Ej) = pj

and P2 = Pr(r(k) = r2
(k), m(k) = m2

(k)) = Pr(xn+1 = 0 | s(k), n(k), Ej) = 1 − pj respectively.

Equation (2.10) holds for the case L = 2 since
∑2

h=1 Ph = pj + 1− pj = 1. Next we suppose

that equation (2.10) holds for any stopping rule τ (b) and show that it also holds for τ (b+1). We

note that for every stopping rule τ (b+1) there exist a sequence {(rh
(k), m

h
(k), ), h = 2, 3, . . . , b}

and a stopping rule τ (b) such that τ (b)(r(k), m(k)) = 1 for all h and
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τ (b+1)(rh
(k), m

h
(k)) =

 0 if h = t;

1 otherwise.
(2.11)

This implies that τ (b+1) = 1 when the value (rh
(k), m

h
(k)) is combined with the observation

xmt+1 from one more patient under some treatment, say Ei. Consequently,

k′+1∑
h=1

Ph =
∑
h 6=t

k∏
j=0

p
rh
j

j (1− pj)
mh

j−rh
j +

k∏
j=0

p
rt
j

j (1− pj)
mt

j−rt
j(1− pi) +

k∏
j=0

p
rt
j

j (1− pj)
mt

j−rt
jpi

=
∑
h 6=t

k∏
j=0

p
rh
j

j (1− pj)
mh

j−rh
j +

k∏
j=0

p
rt
j

j (1− pj)
mt

j−rt
j

=
k′∑

h=1

k∏
j=0

p
rh
j

j (1− pj)
mh

j−rh
j

= 1. (2.12)

Hence equation (2.10) holds for all integers L ≥ 2. If we define uh = Un+mh
(dn+mh

=

1, s(k), n(k), r(k), m(k), t
∗
n+mh+1), then by the above result the set of pairs {(uh, Ph), h = 1, 2,

. . . , L} constitutes a probability mass function of a random variable, denoted by U . Hence

by equation (2.6) the expected utility U
(τ)
n (s(k), n(k), tn+1) is equal to the expected value of

U , and is given as

U (τ)
n (s(k), n(k), tn+1) =

L∑
h=1

uhPh. (2.13)

The development of our expected utility estimating algorithm described in the next chapter

is based on this result.
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2.6 Implementation of Backward Induction for a single-

arm trial

2.6.1 Trial design

Suppose we consider a single-arm trial design where an experimental treatment E is com-

pared with a standard treatment S. As before, we assume that the patient response is binary

and that the design is sequential. We also assume that the success probability, denoted by

θ0, of the standard treatment is known and fixed while that of treatment E, denoted by θ1,

is unknown. Suppose that θ1 has a beta prior distribution with parameters α1 and β1. If

the trial is at stage n, then we have the sequence of observations xn = (x1, x2, . . . , xn) from

the first n patients, all assigned to treatment E. Summarizing past data by the sufficient

statistic (n, s), where n and s are the number of patients and observed successes respectively,

we obtain the posterior predictive distribution, p(xn+1 | n, s), of a future observation xn+1

under treatment E as a Bernoulli distribution with success probability α1+s
n+β1−s

. Therefore,

we have that the expected utility in (2.4) of stopping the trial depends on the data, xn,

through the sufficient statistic (n, s) and can be denoted as Un(dn = 1, n, s, tn+1). We note

that the use of (n, s) reduces our exponentially growing decision tree to a two dimensional

table, making the implementation of Backward Induction easy and fast. At the last stage

N , we compute

U∗
N(dN = 1, N, s, tN+1) = max

tN+1=S,E
UN(dN , N, s, tN+1) (2.14)

for all values of s. Moving one step backwards the expected utility UN−1(dN−1 = 0, N −1, s)

in (2.6) can also be evaluated for all s and hence the maximum expected utility is obtained as

in (2.7). Working backwards that way, U∗
n(.) can be computed recursively for earlier stages

n = N−1, N−2, . . . , 2, 1, 0. The result is an (N+1)×(N+1) table whose (n+1, s+1)th entry

in the upper diagonal is equal to the maximum expected utility, U∗
n(n, s, tn+1), which may
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correspond to the decision of stopping or continuing the trial. Entries below the diagonal

represent impossible cases where s > n.

2.6.2 Example

We consider an example of the above trial design by setting N = 12, θ0 = 0.65, assuming

that v(.) in (2.1) is such that v(t, 1) = 1 and v(t, 0) = 0 for any t = S, E, and that

θ1 ∼ beta(0.75, 0.25). Computing the maximum expected utility, U∗
n(n, s, tn+1), at any stage

n of the trial for each possible value of (n, s), as outlined in the above subsection, we obtain

the optimal stopping rule given in the form of the table below.

n

s 0 1 2 3 4 5 6 7 8 9 10 11 12

0 C S S S S S S S S S S S S

1 I C C S S S S S S S S S S

2 I I C C C S S S S S S S S

3 I I I C C C S S S S S S S

4 I I I I C C C S S S S S S

5 I I I I I C C C C S S S S

6 I I I I I I C C C C S S S

7 I I I I I I I E C C C C S

8 I I I I I I I I E E E E E

9 I I I I I I I I I E E E E

10 I I I I I I I I I I E E E

11 I I I I I I I I I I I E E

12 I I I I I I I I I I I I E

Table 2.1: In the table, the symbols S and E indicate the decision to stop with the standard

and the experimental treatments respectively, and C indicates the decision to continue. I

represent impossible cases.
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2.7 Estimation of expected utility given a stopping rule

2.7.1 The algorithm

Consider a clinical trial aimed at comparing k experimental treatments with a standard

treatment. Suppose the trial is at stage n and that based on past data (xn, tn), summarized

by the sufficient statistic (s(k), n(k)), a given stopping rule τ indicates the decision to continue.

The expected utility determined by τ , denoted by U
(τ)
n (s(k), n(k), tn+1), is estimated as follows.

For each q = 1, 2, . . . , G, simulate a set of k + 1 values, denoted by θ
(q)
j , j = 0, 1, . . . , k, from

probability distributions πj(θj), j = 0, 1, . . . , k respectively. Simulate the observations x
(q)
r

from a ber(γ
(q)
r ) distribution, r = 1, 2, . . . , nq for each q until τ prescribes stopping at stage

nq ≤ N . Suppose that, based on the l − 1 previous simulated observations x
(q)
1 , . . . , x

(q)
l−1, τ

indicates continuation; then the observation x
(q)
l is simulated from a ber(γ

(q)
l ) distribution

where the success probability, γ
(q)
l , is equal to a value in {θ(q)

j , j = 0, 1, . . . , k} corresponding

to the treatment that maximizes the expected utility. The above step yields G sequences

{x(q)
nq = (x

(q)
1 , x

(q)
2 , . . . , x

(q)
nq ), q = 1, . . . , G} of simulated observations. Then summarize each

sequence x
(q)
nq by the sufficient statistic (s

(q)
(k), n

(q)
(k)) and compute the value, denoted by u(q),

of the expected utility Unq(dnq = 1, s
(q)
(k), n

(q)
(k), tnq+1) of stopping. Based on the G simulations

u(q), q = 1, 2, . . . , G, of expected utilities, a point estimate of the expected utility determined

by τ is given by

Û (τ)
n (s(k), n(k), tn+1) =

1

G

G∑
q=1

u(q). (2.15)

Note that, for a given stopping rule τ , our algorithm permits simulating the values u(q),

q = 1, 2, . . . , G, from the discrete probability distribution defined in section 2.4 whose mean

is equal to the expected utility U
(τ)
n (s(k), n(k), tn+1), and thus Û

(τ)
n → U

(τ)
n as G →∞.

Suppose sG denotes the sample standard deviation of the above G simulations of the ex-

pected utilities. We have by the central limit theorem that as G →∞ the random variable
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√
G(Û

(τ)
n −U

(τ)
n )

sG
is approximately distributed as a standard normal random variable. Using

this normal approximation, a suitable choice of G that would yield a good point estimate in

(2.15) is chosen big enough such that the expected utility of stopping lies outside the interval

Û
(τ)
n ± zφ

2

sG√
G

where zφ
2

is obtained as the solution to the equation

Pr(|
√

G(Û
(τ)
n − U

(τ)
n )

sG

|≤ zφ
2
) ≈ 1− φ. (2.16)

Once this interval has been attained, we can use our estimate to tell with probability 1− φ

that the expected utility determined by τ , U
(τ)
n , is less or greater than the expected utility

of stopping. We note that, although this simulation-based algorithm is a known procedure

for estimating expected utility it has not been consistently documented.

We will use our algorithm together with the proposed stopping rule, to be described in the

next section, to estimate the expected utility of continuing at a given stage in a double-arm

clinical trial design and compare our estimates with the exact values to see how well the

proposed stopping rule, τ p, performs as an approximation of the optimal stopping rule τBI

obtained by backward induction. Note that for a double-arm trial design we obtain the

exact values of the expected utility of continuing at any stage by implementing backward

induction using a software coded in C++ and developed by Wathen Christen and Christen

(2004).

2.7.2 Example

For the purposes of illustration we estimate the expected utility of continuing at stage n = 0

of a double-arm clinical trial using the simulation-based algorithm, outlined the previous

section, together with the stopping rule

τ e
n(s(1), n(1)) =

 0 if | s1 − s0 |≤ 2;

1 otherwise,
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where n(1) = (n0, n1) and s(k) = (s0, s1). Note that τ e = 0 at stage n = 0. We fix the

maximum number of patients at N = 12, and suppose that probabilities of success θ0 and

θ1 have beta distributions beta(0.75, 0.25) and beta(0.65, 0.35) respectively. Also, we assume

that for any treatment t we have the utility function v defined as v(0, t) = 0 and v(1, t) = 1.

The expected utility of stopping at stage n = 0, computed as outlined in the previous

chapter, is equal to 0.75. Using our algorithm we generated G = 10, 000 simulations of the

the expected utilities and obtained a point estimate of the expected utility of continuing as

0.7811. Hence, based on this estimate, the decision would be continue the trial to the next

stage.



Chapter 3

Multiple-arm Clinical Trial with

Binary Response

3.1 Introduction

Conducting a clinical trial with multiple treatment arms is appropriate in situations where

many new treatments are to be compared with a standard treatment. For instance, in dose-

finding studies where several dose levels are compared with a control level (see Christen et

al., 2004) or in cases where there are many potential new treatments of a severe disease

without a standard treatment. It has the advantage of using less patients and saving both

time and resources in comparison to conducting a series of single-arm trials.

In this chapter, we consider multiple-arm clinical trials with binary responses where data

are monitored regularly using a Bayesian approach. We note that, for the case of clinical

trials with two treatment arms the optimal sequential decision can be found by implementing

Backward Induction using a software written in C++ and developed by Wathen and Christen

23
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(2004). However, for trial designs with more than two treatment arms Backward Induction is

impossible to implement. We approximate the optimal stopping rules for such trial designs by

proposing a novel stopping rule using the optimal stopping rule of a single-arm trial obtained

by Backward Induction. We also estimate the expected utility using the simulation-based

algorithm outlined in last section of chapter 2 together with our proposed stopping rule.

Obtaining an approximate stopping rule in this manner is original and has never been used

or published elsewhere.

We describe the construction of our proposed stopping in section 2. In section 3, we take an

example of a double-arm clinical trial where we compare our approximations of the expected

utility of continuing, at the initial stage, with the exact values. We present the results of the

operating characteristics of our proposed trial design in section 4. The chapter ends with a

discussion of our proposed trial design in section 5.

3.2 The Proposed Stopping Rule τ p

The construction of the proposed stopping rule τ p for multiple-arm clinical trials is based on

the optimal stopping rule for a single-arm clinical trial design for comparing an experimental

treatment with a standard treatment whose success probability is assumed fixed and known.

Suppose a single-arm trial is at stage n and that the observed data x = (x1, x2, . . . , xn) from

the first n patients are summarized by the sufficient statistic (n, s) where n and s denote

the number of observations and the number of observed successes respectively. Using the

sufficient statistic (n, s) transforms the decision tree to a simple two dimensional table and

hence we can implement backward induction algorithm as outlined in section 2.5 without

any difficulty.

Suppose we consider the multiple-arm clinical trial where k experimental treatments are
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compared with a standard treatment. At any stage n of the trial the sequential decision

according to the proposed stopping rule τ p based on past data, (s(k), n(k)), is evaluated as

follows. The expected utility, denoted by Un(dn = 1, s(k), n(k), tn+1 = Ej), of stopping the

trial at stage n with treatment Ej, is computed for all j = 0, 1, ..., k. Suppose that from

stage n onwards the multiple-arm clinical trial continues with one of the (k + 1) treatments,

say El, until stopping. It follows by the above supposition that the multiple-arm clinical

trial is converted to a single-arm clinical trial comparing treatment El with the treatment

that corresponds to maxj 6=l Un(dn = 1, s(k), n(k), tn+1 = Ej). We then apply the method

of backward induction in the resulting single-arm trial to compute the expected utility of

continuing denoted by u∗n(l). Repeating this process for l = 0, 1, . . . , k gives the values

u∗n(0), u
∗
n(1), . . . , u

∗
n(k). Suppose for the purpose of illustration we consider a clinical trial with

multiple arms that is two stages away from the horizon N . The decision tree at stage n

with the branch indicating continuation with treatment El extended up to the last stage is

given in figure 3.1. The value u∗n(l) is obtained by beginning at the last stage with the shaded

square nodes and working backwards along the branches marked with doted lines.

If we let u∗n = max{u∗n(0), u
∗
n(1), . . . , u

∗
n(k)}, then the value u∗n becomes our estimate of the

expected utility of continuing the trial Un(dn = 0, s(k), n(k), t
∗
n+1). Therefore, based the

observed data (s(k), n(k)), the sequential decision according to τ p is to continue the trial

if the value u∗n is greater than the maximum expected utility Un(dn = 1, s(k), n(k), t
∗
n+1) of

stopping the multiple-arm trial. Otherwise the decision is to stop the trial.

We note that the estimate u∗n , as figure 3.1 indicates, is computed by using the branches of

the decision tree at stage n that corresponds to the possibility of continuing the trial with

one of the k + 1 treatments until stopping and is therefore less than the expected utility

of continuing, Un(dn = 0, s(k), n(k), t
∗
n+1), at stage n obtained by backward induction. This

implies that if at a given stage of a clinical trial the proposed stopping rule, τ p, indicates

the decision to continue the trial, then the optimal stopping rule, τBI , will also indicate

continuation. That is, our decision to continue a trial according to τ will be optimal and an
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Figure 3.1: Decision tree at stage n. The square nodes represent treatment allocation deci-

sions and the circles stand for binary patient outcomes.
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error may only be committed when τ p indicates stopping.

3.3 Example

We consider the estimation of the expected utility of continuing by our algorithm using the

proposed stopping rule τ p in a double-arm clinical trial design comparing an experimental

treatment E with a standard treatment S. We then compare our estimates with the exact

values, obtained by a software developed by Wathen and Christen (2004), to evaluate the

accuracy of our approximation of the optimal stopping rule by the proposed stopping rule

τ p. We assume that the success probabilities θ0 and θ1 for treatments S and E are both

unknown and have beta(α0, β0) and beta(α1, β1) distributions respectively. We consider three

cases determined by values chosen for the parameters (α0, β0, α1, β1) for all of which the trial

continues at stage n = 0. In the first and the second cases we estimate the optimal sequential

decision when the differences between expected utilities of stopping and continuing are very

big and very small, respectively. We note that when the said difference of expected utilities

is very small it becomes difficult to detect it through estimation and hence the second

case is considered to evaluate the accuracy of our approximation by τ p. The third case

presents estimation of expected utility with noninformative priors for θ0 and θ1 where the

likelihood dominates. Suppose the trial is at stage n and that the observed data (xn, tn)

is summarized by the sufficient statistic (s(1), n(1)). The posterior predictive distribution of

a future observation xn+1, p(xn+1 | tn+1,xn), is obtained as a Bernoulli distribution (as

explained in section 1.3) with success probability

θ =

 α0+s0

n0+α0+β0
if tn+1 = S;

α1+s1

n1+α1+β1
if tn+1 = E.

(3.1)
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(α0, β0, α1, β1) U
(1)
n U

(0)
n u∗n Û

(τp)
n

(0.10,0.90,0.75,0.25) 0.75 0.7523 0.7504 0.7507

(0.5,0.5,0.5,0.5) 0.50 0.6505 0.6234 0.6487

(0.75,0.25,0.65,0.35) 0.75 0.8426 0.8233 0.8412

Table 3.1: Estimation of the expected utility of continuing: In this table the first column

indicates the fixed parameter values for the respective prior distributions beta(α0, β0) and

beta(α1, β1) for θ0 and θ1 and the columns U
(1)
n and U

(0)
n report the exact expected utilities

of stopping and continuing respectively. The estimates obtained by evaluating the value of

τ p and by our algorithm at stage n are denoted u∗n and Û
(τp)
n respectively.

Suppose in equation (2.1) we let aj = 0 and bj = 1 for all j. Then the expected utility of

stopping given in equation (2.4) becomes

Un(dn = 1, tn+1, s(1), n(1)) = (α + (1− α)
N − n

N
)θ +

1− α

N
(s0 + s1). (3.2)

We fix the horizon to N = 12 and report our estimates in the table 3.1. The values have been

selected purely for the purpose of illustration. For every set of parameter values the proposed

stopping rule, τ p, is constructed as described in section 3.2 and the estimate u∗0 of the

expected utility of continuing is indicated. Also, we indicate in the table the corresponding

values of the expected utility of stopping, the expected utility of continuing obtained by

backward induction and the estimate of the expected utility obtained by our simulation-

based algorithm using τ p, denoted by the symbols U
(1)
n , U

(0)
n and Û

(τp)
n respectively. Note

that in each case estimation by our algorithm was based on G=10,000 simulations.

We observe from table 3.1 that the estimates u∗n and Û
(τp)
n are very close to the exact value for

all choices of (α0, β0, α1, β1), and by the fact that both estimates lead to optimal continuation

of the double-arm trial at stage n = 0 even when the difference between the expected utilities

of stopping and continuing is very small, we conclude that τ p is a good approximation of the

optimal stopping rule at this stage.
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3.4 Operating characteristics for a three-arm clinical

trial

In this section we study the behavior of our proposed clinical trial design when the number

of treatment arms is more than two. Here we do not have the benefit of an exact computa-

tion by Backward Induction. We consider a clinical trial with three treatment arms where

two experimental treatments E1 and E2 are compared with a standard treatment E0 and

evaluate the operating characteristics of our trial design. We consider five different scenarios

determined by fixing the values of the success probabilities, denoted by θ0, θ1 and θ2. Under

each scenario we simulate 1,000 possible observations of the entire trial and give a tabular

report indicating the average number of patients allocated to each treatment, the corre-

sponding standard deviation, the probability of stopping with the best treatment evaluated

under repeated simulations and the fixed success probabilities. We also report in the tables

the average number of patients observed before the trial stops.

We assume in all scenarios that each of the prior parameters for the success probabilities of

the three treatments has a beta(0.5, 0.5) distribution, that the utility function v is defined as

v(0, t) = 0 and v(1, t) = 1 for any treatment t and that a maximum of N = 50 patients are

enrolled. Scenario 1 depicts a case where all the three treatments are equally efficacious, i.e.

no treatment provides treatment advance over the others. Here we set θ0 = θ1 = θ2 = 0.3

and obtained an average of 41.56 observed patients and the trial stops with each of the three

treatments at approximately equal probability. Scenario 2 depicts a case where the standard

treatment is superior to both experimental treatments. We fixed the probabilities θ0, θ1 and

θ2 to 0.5, 0.3 and 0.3 respectively. The trial stopped with average of 36.44 patients and did

so with the standard treatment 62.7% of the time. Scenarios 3 and 4 depicts cases where

an experimental treatment is superior. The probabilities are fixed according to the sets

(0.3, 0.6, 0.4) and (0.1,0.2,0.6) respectively. The trial stopped with 34.66 and 28.98 patients
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in scenarios 3 and 4 respectively and did so in both cases with the superior treatment with

the highest probability (70.1%, 92.0% respectively). In scenario 5 depicts a situation where

both the experimental treatments are equally effective and both are superior to the standard

treatment. We fixed probabilities at 0.3, 0.6 and 0.6 respectively. An average of 34.96 patients

were observed and with each of the treatments E1 and E2 resulting to be the best 46.6%

and 49.6% of the times.

We note that at any given stage of the trial design the maximum expected utility may

correspond to at least two treatments and in this case if continuation is optimal then we use

randomization with equal probability to assign a treatment to the next patient.

In all the five scenarios, based on the clinical trial with three arms, our design demonstrates

attractive properties in the sense that the results obtained for any fixed set of values of the

treatment success probabilities agree with what might realistically be anticipated. In other

words, if the treatments are equally efficacious as in scenario 1 columns ñt and Pt indicate

that the three treatments were equally preferred and in each of the other scenarios the same

columns indicate that the three treatments were preferred according to the assumed order

of superiority.
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Scenario 1 Scenario 2

Trt ñt St.dev. θt Pt

E0 13.82 16.60 0.3 0.333

E1 13.89 16.46 0.3 0.341

E2 13.85 16.67 0.3 0.327

ñ 41.56 9.94

Trt ñt St.dev. θt Pt

E0 18.08 15.81 0.5 0.627

E1 9.12 14.40 0.3 0.184

E2 9.24 14.39 0.3 0.189

ñ 36.44 11.89

Scenario 3 Scenario 4

Trt ñt St.dev. θt Pt

E0 5.49 10.86 0.3 0.084

E1 19.64 16.90 0.6 0.701

E2 9.53 14.78 0.4 0.215

ñ 34.66 13.27

Trt ñt St.dev. θt Pt

E0 2.09 3.91 0.1 0.009

E1 5.03 10.34 0.2 0.071

E2 21.86 14.58 0.6 0.920

ñ 28.98 13.31

Scenario 5

Trt ñt St.dev. θt Pt

E0 3.66 8.66 0.3 0.038

E1 15.05 17.51 0.6 0.466

E2 16.24 17.89 0.6 0.496

ñ 34.96 13.45

Table 3.2: Operating characteristics. In all tables, E0, E1 and E2 denote treatments, ñt

indicates the average number of patients assigned to each treatment, St.dev is the corre-

sponding standard deviation, θt denotes the assumed true value of the treatment success

probability and the column Pt indicates the probability of choosing each treatment as the

best on stopping the trial. See Appendix B for more details on the interpretation of operating

characteristics.
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3.5 Discussion

Here we have considered the approximation of the optimal stopping rules for clinical trials

with more than two treatment arms using the optimal stopping rule by our proposed stopping

rule, τ p, whose construction is based on the optimal stopping rule of a single-arm clinical trial.

The comparison study displayed in table 3.1 and the results of the operating characteristics

in the previous section, show that our proposed stopping rule, τ p, is a good approximation

of the optimal stopping rule obtained by Backward Induction. Our approximation will

enable using the Bayesian decision theoretic approach to clinical trials with more than two

treatment arms. The rationale behind our approximation can be understood by noting

that at any stage n of a multiple-arm trial, the use of the single-arm conversion provides a

systematic way of choosing some of the numerous future scenarios; hence starting at the last

stage and working backwards, the approximate expected utility of continuing is computed.

Our proposed trial design is easy to implement as computing the value of τ p at any stage

involves simple programming and hence allows high number of interim looks.

Our approximation of the optimal stopping rule is not limited to a specific utility function

and in principle may be implemented with other utility functions, leading to similar optimal

stopping rules for a single-arm trial and is suited to a problem at hand. Similarly, aside

from the beta prior distributions that we have used to model the success probabilities, other

distributions that may be considered adequate can be used. Detailed methods of prior

elicitation are presented by Kadane and Wolfson (1998), Chaloner K. (1996)and Geisser,S.

(1984).

We carried out a sensitivity analysis of our proposed trial design by repeating scenario 3 con-

sidered in the previous section with a slightly changed beta prior distribution, beta(0.6, 0.4),

and obtained the following results in table 3.3. Compared to the results of scenario 3 in table

3.2, the difference between the columns marked ñt, St.dev and Pt are minimal. Similarly,
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Trt ñt St.dev. θt Pt

E0 5.99 11.25 0.3 0.079

E1 19.20 14.95 0.6 0.717

E2 9.54 14.53 0.4 0.204

ñ 34.73 12.29

Table 3.3: Sensitivity analysis

.

with reference to the informative prior distributions stated in (3.3), we observed minimal

differences in the results upon making a number of slight changes of the priors and repeated

scenario 3. Scenario 3 in section 3.4 was considered using noninformative prior distributions

for the unknown success probabilities. However, if repeated using informative beta prior

distributions,

θ0 ∼ beta(1.5, 3.5), θ1 ∼ beta(3, 2) and θ2 ∼ beta(2, 3), (3.3)

indicating evidence that treatment E1 is superior to both E0 and E2 and that E2 is the

least effective (see figure 3.2), a much better performance is obtained, as seen in table 3.4.

The trial recommends the best treatment upon stopping 96.7% of the time and stops earlier,

compared to scenario 3 in table 3, 2, by a big margin of eight patients. We note that, use

of such informative prior distributions, as is the case in most clinical trials, will produce a

remarkable increase in the efficiency of our proposed trial design to assign the best treatment

to a patient and recommend the same upon stopping. See Appendix B for more analysis of

scenario 3.

We remark that based on the general construction of our proposed stopping rule τ p, any

multiple-arm trial design with more than three treatment arms will produce impressive

results of the study of operating characteristics just like the ones displayed here and in

section 3.4. Consequently, based the numerical evaluation of our trial design presented in

this section and in sections 3.3 and 3.4, we conclude that our proposed stopping rule τ p
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Figure 3.2: Informative beta prior distributions for the unknown treatment success proba-

bilities θ0, θ1 and θ2.

is a good approximation of the optimal stopping rule for multiple-arm trial designs with

more than two arms where backward induction is infeasible to implement. Simulations for

representative scenarios 1, 3 and 5 and a software written in R for generating them are found

in http : //www.cimat.mx/ ∼ jac/material/Orawothesis.zip.
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Trt ñt St.dev. θt Pt

E0 0.08 1.44 0.3 0.002

E1 24.91 8.28 0.6 0.967

E2 1.59 6.38 0.4 0.031

ñ 26.58 8.17

Table 3.4: Scenario 3 with informative prior distributions assigned to the unknown success

probabilities.
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Chapter 4

Related Trials

4.1 Introduction

Suppose we have a sequential clinical trial where a new treatment E is to be compared

with a standard treatment S such that a successful treatment of a patient depends on some

covariates, for instance, weight, age of a patient, the stages of development of the disease etc.

Assuming that the patient response is binary, then any of the two treatments has different

unknown success probabilities corresponding to the various levels of the covariate under

consideration. For instance, the unknown success probabilities may be ordered, from the

highest to the lowest, according to the stages of the disease. Using the initial information

about how the unknown success probabilities depend on the levels of the covariate, it may

be appropriate to divide patients into cohorts in such a way that we can borrow strength or

learn about certain cohorts from the data in the other cohorts. Hence gaining performance

in comparison to conducting a series of independent trials, in the sense that fewer patients

may be used and both time and resources may be saved. The problem may be regarded as

one trial divided in a series of related (sub)trials, one for each cohort. We note that solving

37
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this sequential problem using Bayesian decision theory is complex even when the patients

are divided into only two cohorts (see the decision tree in figure 4.1). Hence to illustrate the

importance of conducting related trials we consider a case of two related trials.

In this chapter, we approximate the optimal sequential decision at any paired stages of two

related trials by proposing two novel stopping rules, one for each trial. We outline the trial

design in the section 2. Then in section 3, we define the prior distributions and outline

how the posterior distributions are obtained. In section 4, we present the version of the

simulation-based algorithm for estimating the expected utility, in the last section of Chapter

2, suited for the trial design that we consider here. Section 5 outlines the construction of our

proposed stopping rules. Section 6 presents an example illustrating how we approximate the

optimal sequential decision at the initial stages of two related trials. In section 7, we present

the results of the operating characteristics of our trial design. We discuss our findings in

section 8.

4.2 The trial design

Suppose the effectiveness of an experimental treatment E is to be evaluated relative to a

standard treatment in a clinical trial where patients are divided into two cohorts. Patients

in cohort 1 are in a milder stage of the disease than those in cohort 2. Suppose we denote

by θ, π and θ′, π′ the unknown probabilities of success for treatments E, S in cohorts 1 and

2 respectively. Then, based on the above mentioned relation between the two cohorts, we

have that θ′ < θ and π′ < π.

We assume that p(θ, θ′, π, π′) = p(θ, θ′)p(π, π′). However, we will restrict ourselves to a class

of joint prior distributions for which the two trials can learn from each other as they progress.

We use x to represent a patient response under treatment t in trial (cohort) 1 and similarly
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let x′ to denote patient response under treatment t′ in trial (cohort) 2. Let the values v(t, x)

and v′(t′, x′), as in chapter 2, indicate for the corresponding trials the value of the utility for

having made a given observation under a given treatment. Also, we let N and M denote

the fixed maximum numbers of patients in trials 1 and 2 respectively. At any stages n < N

and m < M of trials 1 and 2, respectively, we have to decide whether to stop both trials or

continue with at least one trial for one more period. In other words, if we let 0 and 1 denote

the decisions of stopping and continuing a trial respectively, then at any stages of the two

trials we are faced with a set of four paired decisions {(1, 1), (0, 1), (1, 0), (0, 0)} to choose

from. For any pair of decisions out of the four that turns out to be optimal there are four

possible treatment pairs, namely (E, E), (E, S), (S, E), (S, S), that may be indicated by the

design as being the best pair of treatments for the two trials respectively. We present part

of the decision tree in figure 4.1 to illustrate the decision process described above.

The notation we use here will be the same as in the previous chapters except that we use a

“prime” superscript on symbols denoting treatments, observations and decisions for trial 2.

We use Un,m(.) to denote the expected utility at stages n and m of trials 1 and 2 respectively.

We let U∗
n,m(.) to represent the corresponding maximum expected utility. Also, unlike in the

previous chapters, we use x(j,k) = (xj, xj+1, . . . , xj+k−1) and t(j,k) = (tj, tj+1, . . . , tj+k−1) to

denote sequences of k observations and the applied treatments beginning from the jth stage

in trial 1. The corresponding sequences of observations and treatments in trial 2 will be

denoted in a similar manner. Suppose the two trials are at stages n and m, then we have

the sequences of binary observations x(1,n) = (x1, x2, . . . , xn) and x′(1,m) = (x′1, x
′
2, . . . , x

′
m)

from the first n and m patients in trials 1 and 2 respectively resulting from applying the

sequences of treatments t(1,n) = (t1, t2, . . . , tn) and t′(1,m) = (t′1, t
′
2, . . . , t

′
m) where each ti and

each t′h, i = 1, 2, . . . , n, h = 1, 2, . . . ,m may be either treatment E or S. We use Dn,m to

represent the observed data (t(1,n),x(1,n), t
′
(1,m),x

′
(1,m)) in both trials. If both trials stop, then

based on the utilities v(ti, xi) and v′(t′j, t
′
j) the utility function, denoted by u(dn = 1, d′m =

1, tn+1, t
′
m+1,x(n+1,N−n+1),x

′
(m+1,N−m+1),D(n,m)), for the entire trial 1 and trial 2 is analogous
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Figure 4.1: Decision tree at stages n and m. The square nodes stand for possible paired

decisions and treatments and the circles stand for patient outcomes classified as success(s)

and failure(f).
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to the utility function in (2.2) and is given by

u(dn = 1, d′m = 1, tn+1, t
′
m+1,x(n+1,N−n+1),x

′
(m+1,M−m+1),Dn,m) =

α{v(tn+1, xN+1) + v′(t′m+1, x
′
M+1)}+ (1− α)

1

N + M

{
n∑

i=1

v(ti, xi)+

m∑
j=1

v′(t′j, x
′
j) +

N∑
i=n+1

v(tn+1, xi) +
M∑

j=m+1

v′(t′m+1, x
′
j)

}
, (4.1)

where α = 1
N+M+2

and x(n+1,N−n+1) = (xn+1, xn+2, . . . , xN+1) and x′(m+1,M−m+1) = (x′m+1,

x′m+2, . . . , x
′
M+1) are the future observations under treatments tn+1 and t′m+1 respectively.

Note that we are dealing with one single trial to test the same new treatment, and therefore

we should use one single utility function. The different characteristic here is that we have two

cohorts (groups 1 and 2) dividing the study into two related trials. Given the current history

Dn,m, the optimal pair of treatments (t∗n+1, t
′∗
m+1) is obtained by maximizing the expected

utility

Un,m(dn = 1, d′m = 1, tn+1, t
′
m+1,Dn,m) =

E{u(dn = 1, d′m = 1, tn+1, t
′
m+1,x(n+1,N−n+1),x

′
(m+1,M−m+1),Dn,m)} (4.2)

over (tn+1, tm+1) ∈ {(E, E), (E, S), (S, E), (S, S)}, where the expectation is with respect

to future observations. The utility function in (4.1) is a weighted sum of the utilities

v(ti, xi) and v′(t′i, x
′
i) of the patients in both trials and the utilities of future patients as-

signed to treatments tn+1 and t′m+1 respectively. We note that the future observations

under a given treatment in a given trial are identically distributed and therefore, instead

of using the respective joint posterior predictive distributions P (x(n+1,N−n+1) | tn+1,Dn,m)

and P ′(x′(m+1,M−m+1) | t′m+1,Dn,m) of sequences of future observations x(n+1,N−n+1) and

x′(m+1,M−m+1) to evaluate the above expectation, we use their respective common predictive
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distributions P (x | tn+1,Dn,m) and P ′(x′ | t′m+1,Dn,m). We obtain

Un,m(dn = 1, d′m = 1, tn+1, t
′
m+1,Dn,m) =

1− α

N + M

{
n∑

i=1

v(ti, xi) +
m∑

j=1

v′(t′j, x
′
j)

}
+{

α + (1− α)
N − n

N + M

} ∑
x=0,1

v(tn+1, x)P (x | tn+1,Dn,m) +{
α + (1− α)

M −m

N + M

} ∑
x′=0,1

v′(t′m+1, x
′)P ′(x′ | tm+1,Dn,m). (4.3)

If at least one trial continues or, equivalently, if (dn, d
′
m) ∈ {(0, 0), (0, 1), (1, 0)}, then by

Backward induction the expected utility Un,m(.) is defined as

Un,m(dn, dm, tn+1, t
′
m+1,Dn,m) =

c1

∑
xn+1=0,1

∑
x′

m+1=0,1

U∗
n+1,m+1(Dn+1,m+1)P (xn+1, x

′
m+1 | tn+1, t

′
m+1,Dn,m)

+ c2

∑
xn+1=0,1

U∗
n+1,m(Dn+1,m)P (xn+1 | tn+1,Dn,m)

+ c3

∑
x′

m+1=0,1

U∗
n,m+1(Dn,m+1)P

′(x′m+1 | t′m+1,Dn,m), (4.4)

where c1 = (1− dn)(1− d′m), c2 = dn ,c3 = d′m, Dn+1,m = Dn,m

⋃
{xn+1, tn+1} and Dn,m+1 =

Dn,m

⋃
{xm+1, tm+1}. We note that the quantities U∗

n+1,m(.) and U∗
n,m+1(.) in the above equa-

tion are random variables. Beginning at the last stage N where both trials must terminate

and the optimal pair of treatments (t∗N+1, t
′∗
M+1) obtained by maximizing the expected utility

of stopping both trials, the expected utilities defined in (4.4) can be evaluated working back-

ward to the initial stages. Consequently, at any stages n and m of trials 1 and 2 respectively

the maximum expected utility U∗
n,m(Dn,m) is obtained as

U∗
n,m(Dn,m) = max

dn,d′
m

{ max
tn+1,t′m+1

{Un,m(dn, d
′
m, tn+1, t

′
m+1,Dn,m)}}. (4.5)

The optimal solution described above is infeasible to implement because of the exponential

explosion of the decision tree, which looks complex even for N = M = 2. We therefore

construct a stopping rule as in section 3.2 using the optimal stopping rule of a single-arm

clinical trial.
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4.3 Prior and posterior distributions

We now describe the general Bayesian framework relevant to our trial design outlined above.

If we assume that the random vectors (θ, θ′) and (π, π′) are independent, then the joint prior

density of θ, θ′, π and π′, denoted by p(θ, θ′, π, π′), can be expressed as

p(θ, θ′, π, π′) = p(θ, θ′)p(π, π′) (4.6)

where p(θ, θ′) and p(π, π′) are the marginal joint densities of the random vectors (θ, θ′) and

(π, π′) respectively. If the two trials are at stages n and m and the observed data is denoted

by Dn,m as in the previous section, the posterior distribution p(θ, θ′, π, π | Dn,m) is given by

p(θ, θ′, π, π | Dn,m) ∝ f(Dn,m | θ, θ′, π, π)p(θ, θ′)p(π, π) (4.7)

where f(Dn,m | θ, θ′, π, π′) is the likelihood function. Suppose we let DE
n,m and DS

n,m be the

data from both trials corresponding to treatments E and S respectively. We note that by

assuming the result in (4.6), and assuming the conditional independence of data given the

parameters, the posterior can be expressed as a product of the marginal likelihoods, denoted

by f(DE
n,m | θ, θ′) and f(DS

n,m | π, π′), of (θ, θ′) and (π, π′) respectively. Hence the marginal

posterior distributions can be computed as

p(θ, θ′ | DE
n,m) ∝ f(DE

n,m | θ, θ′)p(θ, θ′) (4.8)

and

p(π, π′ | DS
n,m) ∝ f(DS

n,m | π, π)p(π, π). (4.9)

Using these two marginal posterior distributions, the joint posterior predictive distribution,

P (xn+1, xm+1 | tn+1, t
′
m+1,Dn,m), of future observations xn+1 and x′m+1 under treatments tn+1

and t′m+1 respectively at stages n + 1 and m + 1 can be obtained as

P (xn+1, x
′
m+1 | tn+1, t

′
m+1,Dn,m) =

∫ ∫
f(xn+1, x

′
m+1 | µ, λ)p(µ, λ | Dn,m)dµdλ (4.10)



44 CHAPTER 4. RELATED TRIALS

where

µ =

 θ if tn+1 = E;

π if tn+1 = S,
(4.11)

λ =

 θ′ if t′m+1 = E;

π′ if t′m+1 = S,
(4.12)

and f(xn+1, x
′
m+1 | µ, λ) is the joint probability mass function of xn+1 and xm+1. If we

consider continuation of one the two trials, say trial 1, then under treatment tn+1 the posterior

predictive distribution of xn+1 is given by

P (xn+1 | tn+1,Dn,m) =

∫
f(xn+1 | µ)p(µ | Dn,m)dµ. (4.13)

The posterior predictive distribution of x′m+1 under treatment t′m+1 can be obtained in a

similar manner.

The general form of our marginal joint prior distributions for (θ, θ′) and (π, π′) is described

as follows. We suppose that θ′ is known to have a beta(α, β) distribution and for a given

value of θ′, define

θ | θ′ = θ′ + (1− θ′)z (4.14)

where z is a random variable with a beta(α′, β′) distribution. The conditional density p(θ | θ′)

is obtained as

p(θ | θ′) =
1

(1− θ′)α′+β′−1B(α′, β′)
(θ − θ′)α′−1(1− θ)β′−1, θ′ < θ < 1. (4.15)

Therefore the joint prior density p(θ, θ′) is given by

p(θ, θ′) = p(θ | θ′)p(θ′)

=
1

(1− θ′)α′+β′−1B(α′, β′)
(θ − θ′)α′−1(1− θ)β′−1 1

B(α, β)
θ′α−1(1− θ′)β−1,

0 < θ′ < θ < 1. (4.16)
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Note that the above process of defining p(θ, θ′) can be reversed by supposing a known dis-

tribution for θ and that θ′ | θ = θ + (1− θ)z. Similarly, we can derive the joint probability

density in (4.16) for (π, π′). Using joint prior distributions of this general form for the treat-

ment success probabilities, the dependence between the two trials is such that one trial can

learn from the other and vice versa. Observe this dependence in the posterior predictive

distributions for the future outcomes xn+1 and x′m+1 under the treatments tn+1 and t′m+1,

respectively, in section 4.5 where we propose a common prior distribution from this family of

distributions for both (θ, θ′) and (π, π′), in an example illustrating estimation of the optimal

sequential decision at the initial stage.

4.4 Estimation of Expected Utility

We modify our expected utility estimating algorithm described in section 3.1 so that, given

two stopping rules τ and τ ′, we can estimate the expected utility of continuing both trials

at any stages n and m. The two stopping rules that we consider are such that, at any

corresponding stages of the two trials, each is evaluated based on the observed data Dn,m

from both trials. Suppose that based on Dn,m, both τ and τ ′ indicate the decision to

continue each trial at the respective stages n and m. The expected utility determined by

both τ and τ ′, and denoted by Un,m(tn+1, t
′
m+1,D(n,m), τ, τ

′), is estimated as follows. Simulate

(θ(q), θ′(q)) and (π(q), π′(q)) from the probability densities P (θ, θ′) and P (π, π′) respectively,

for q = 1, 2, . . . , G. We note that any of the joint probability densities P (θ, θ′) and P (π, π′)

could be a prior or a posterior probability density depending on whether data has been

accumulated or not, with respect to the corresponding treatment. For each q we simulate xi

from ber(γ
(q)
i ), i = 1, 2, . . . , nq and x′j from ber(γ

(q)
j ), j = 1, 2, . . . ,mq using the stopping rules

τ and τ ′ respectively. Suppose that, after we have simulated the sequences of observations

x1, x2, . . . , xl−1 and x′1, x
′
2, . . . , x

′
r−1 the stopping rule, say τ , indicates continuation. We

proceed to obtain the treatment combination (t∗l , t
′∗
r ) that maximizes the expected utility
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Ul−1,r−1(dl−1 = 1, d′r−1 = 1, tl, tr,x(1,l−1), t(1,l−1),x
′
(1,r−1), t

′
(1,r−1)) of stopping, simulating both

trials and simulating xl from ber(γ
(q)
l ) where

γ(q) =

 θ(q) if t∗l = E;

π(q) if t∗l = S.
(4.17)

Similarly, xr can be simulated if τ ′ indicates continuation based on the simulated obser-

vations x(1,l−1), t(1,l−1),x
′
(1,r−1), t

′
(1,r−1). The above simulations stop at stages nq and mq

when stopping is prescribed by τ p and τ ′p, respectively. The expected utility of stopping

Unq ,mq(dnq = 1, d′mq
= 1, tnq+1, t

′
mq+1,x(1,nq), t(1,nq),x

′
(1,mq), t

′
(1,mq)) is then computed and de-

noted by uq. The point estimate of the expected utility are therefore obtained as

Ûn,m(x(1,n), t(1,n),x
′
(1,m), t

′
(1,m), tn+1, t

′
m+1, τ, τ

′) =
1

G

G∑
t=1

uq. (4.18)

We note that, if at the corresponding stages n and m of the two trials one trial stops and the

other continues, then for a given stopping rule the expected utility of continuing is computed

by implementing our expected utility estimating algorithm as in section 3.1.

4.5 The Proposed Stopping Rules

We now describe the proposed stopping rules, denoted by τ p and τ ′p respectively, for the

two related clinical trials, each with two treatment arms, as an approximation for the opti-

mal stopping rules obtained by backward induction. The construction of the two proposed

stopping rules is based on the alternating conversion of the two trials into single-arm clin-

ical trials whose optimal stopping rules can be evaluated by using the backward induction

algorithm. Suppose trials 1 and 2 are at stages n and m respectively. We wish to establish

the sequential decisions according to the proposed stopping rules based on the observed data

(Dn,m from both trials). Let Dn,m be summarized by the sufficient statistics (nE, sE, nS, sS)

and (mE, s′E, mS, s′S) where, for instance, the pairs (nE, sE) and (mE, s′E) denote the number
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of observations and the number of observed successes due to treatment E in trials 1 and

2 respectively. The other symbols corresponding to treatment S are defined similarly. We

proceed as follows. We assume that one trial stops and the other continues with only one of

the two treatments assigned to patients until stopping. This implies that for the remaining

stages, beginning from the present stage, the continuing trial is equivalent to a single-arm

clinical trial comparing the two treatments. Note that the known probability of success of

any treatment not assigned to patients in the resulting single-arm trial is assumed equal to

the mean of posterior predictive probability distribution of a future observation under this

treatment conditioned on the available observed data from both trials.

For example, if we consider that trial 1 continues and trial 2 stops at stages n and m, and

that treatment E is allocated to patients in trial 1 until stopping. The resulting single-arm

trial compares treatment E with S where the probability of success of treatment S, given by

E(xn+1 | Dn,m, tn+1 = S), is assumed fixed and based on the utility function defined in (4.1)

the expected utility of stopping at jth stage of the single-arm trial is obtained by maximizing

the expected utility of stopping both trials Un+j,m(dn+j = 1, d′m = 1, tn+j+1, t
′
m+1,Dn+j,m) at

stages n+j and m as in (4.3). We then calculate, using backward induction, a value denoted

by uE corresponding to the expected utility of continuing the resulting single-arm trial at

the present stage. Similarly, assuming that the trial with treatment S until stopping in trial

1 we compute the corresponding expected utility uS. Alternating to trial 2 we use a similar

process to calculate the values u′E and u′S.

Suppose we define u∗ = max{uE, uS} and u′∗ = max{u′E, u′S}, then u∗ and u′∗ are our

estimates for the expected utilities corresponding to the paired decisions (0, 1) and (1, 0)

respectively. Our estimate for the sequential optimal decision at stages n and m is stated as

follows.

•If min(u∗, u′∗) > Un,m(dn = 1, d′m = 1, tn+1, t
′
m+1,Dn,m), continue both trials.

•Else if u′∗ ≤ Un,m(dn = 1, d′m = 1, tn+1, t
′
m+1,Dn,m) < u∗, continue trial 1 and stop trial 2.
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•Else if u∗ ≤ Un,m(dn = 1, d′m = 1, tn+1, t
′
m+1,Dn,m) < u′∗, continue trial 2 and stop trial 1.

•Else stop both trials.

We note that when the two trials are alternately converted to a single-arm trial, beginning

from stages n and m, their assumed progress is restricted to the branches of the complete

decision tree indicating the paired decisions (0, 1) and (1, 0) (See fig. 4.1). This leads to

excluding completely the branches indicating (0, 0). Thus, our estimates u∗ and u′∗, ob-

tained by implementing backward induction using the resulting incomplete decision tree, are

respectively less than the optimal expected utilities of continuation under the corresponding

paired decisions (0, 1) and (1, 0). This again implies that if, for instance, u∗ is greater than

the expected utility of stopping at some stages n and m, then the expected utility of contin-

uing under the decision (0, 1) obtained by backward induction is also greater the expected

utility of stopping. Similar implication can be made about the value u′∗. The formulation

of the above decision rule is based on this result.

4.6 Example

We consider an example of the sequential trial design for two related trials and use the

proposed stopping rules τ p and τ ′p to estimate the optimal sequential decisions at stages

n and m of the trials 1 and 2 respectively, based on the observed data (nE, nS, sE, sS) and

(mE, mS, s′E, s′S). For the purpose of illustration we set the maximum number, N , of enrolled

patients in the trial equal to 12 and specify the respective joint prior distributions of (θ, θ′)

and (π, π′). Also, we let v(0, t) = v′(0, t) = 0 and v(1, t) = v′(1, t) = 1 for any treatment

t = E, S. Suppose we assume that θ′ and π′ have the common beta(1, 2) distribution and

that z in (4.14) has the U(0, 1) distribution. Therefore each of the joint prior probability

densities p(θ, θ′) and p(π, π′), whose general form is given in (4.16), simplifies to a probability
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density of the form

f(w, y) =

 2 if 0 < y < 1, y < w < 1;

0 otherwise.
(4.19)

Based on this common prior probability density and conditioning on the data, the joint

posterior probability densities p(θ, θ′ | nE, mE, sE, s′E) and p(π, π′ | nS, mS, sS, s′S) of (θ, θ′)

and (π, π′) are obtained as

p(θ, θ′ | nE, mE, sE, sE) ∝ θsE(1− θ)nE−sEθ′s
′
E(1− θ′)mE−s′

E , 0 < θ′ < θ < 1, (4.20)

and

p(π, π′ | nS, mS, sS, s′S) ∝ πsS(1− π)nS−sSπ′s
′
S(1− π′)mS−s′

S , 0 < π′ < π < 1. (4.21)

Suppose we let θ(nE, mE, sE, s′E), θ′(nE, mE, sE, s′E), π(nS, mS, sS, s′S) and π′(nS, mS, sS, s′S)

denote the posterior expected values of θ1, θ2, π1 and π2 respectively. Writing θsE(1 −

θ)nE−sE =
∑nE−sE

i=0 (−1)i
(

nE−sE

i

)
θi+sE and πsS(1 − π)nS−sS =

∑nS−sS

j=0 (−1)j
(

nS−sS

j

)
πj+sS

and integrating with respect to θ and π respectively, we obtain the marginal distributions

p(θ′ | nE, mE, sE, s′E) and p(π′ | nS, mS, sS, s′S) as

p(θ′ | nE, sE, mE, s′E) ∝ θ′s
′
E(1− θ′)mE−s′

E

nE−sE∑
i=0

(−1)i

(
nE − sE

i

) {
1

sE + i + 1
− θ′sE+i+1

sE + i + 1

}
(4.22)

and

p(π′ | nS, sS, mS, s′S) ∝ π′s
′
S(1− π′)mS−s′

S

nS−sS∑
j=0

(−1)j

(
nS − sS

j

) {
1

sS + j + 1
− π′sS+j+1

sS + j + 1

}
.

(4.23)

Consequently, we get

θ′(nE, mE, sE, s′E) =

∫ 1

0

θ′p(θ′ | nE, mE, sE, s′E) dθ′

=
1

Cθ

nE−sE∑
i=0

(−1)i

(
nE − sE

i

)
1

sE + i + 1

{
Γ(s′E + 2)Γ(mE − s′E + 1)

Γ(mE + 3)

−Γ(sE + s′E + i + 3)Γ(mE − s′E + 1)

Γ(mE + sE + i + 4))

}
(4.24)
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and

π′(nS, mS, sS, s′S) =

∫ 1

0

π′p(π′ | nS, mS, sS, s′S) dπ′

=
1

Cπ

nS−sS∑
j=0

(−1)j

(
nS − sS

j

)
1

sS + j + 1

{
Γ(s′S + 2)Γ(mS − s′S + 1)

Γ(mS + 3)

−Γ(sS + s′S + j + 3)Γ(mS − s′S + 1)

Γ(mS + sS + j + 4))

}
, (4.25)

where the normalizing constants Cθ and Cπ are obtained as

Cθ =

nE−sE∑
i=0

(−1)i

(
nE − sE

i

)
1

sE + i + 1

{
Γ(s′E + 1)Γ(mE − s′E + 1)

Γ(mE + 2)

−Γ(sE + s′E + i + 2)Γ(mE − s′E + 1)

Γ(mE + sE + i + 3))

}
(4.26)

and

Cπ =

nS−sS∑
i=0

(−1)i

(
nS − sS

i

)
1

sS + i + 1

{
Γ(s′S + 1)Γ(mS − s′S + 1)

Γ(mS + 2)

−Γ(sS + s′S + i + 2)Γ(mS − s′S + 1)

Γ(mS + sS + i + 3))

}
. (4.27)

Next, by taking expectation of the conditional expectations E(θ | θ′, nE, sE, mE, s′E) and

E(π | π′, nS, sS, mS, s′S) with respect to θ′ and π′ respectively, we obtain

θ(nE, mE, sE, s′E) =
1

Cθ

nE−sE∑
i=0

(−1)i

(
nE − sE

i

)
1

sE + i + 2

{
Γ(s′E + 1)Γ(mE − s′E + 1)

Γ(mE + 2)

−Γ(sE + s′E + i + 3)Γ(mE − s′E + 1)

Γ(mE + sE + i + 4))

}
(4.28)

and

π(nS, mS, sS, s′S) =
1

Cπ

nS−sS∑
i=0

(−1)i

(
nS − sS

i

)
1

sS + i + 1

{
Γ(s′S + 1)Γ(mS − s′S + 1)

Γ(mS + 2)

−Γ(sS + s′S + i + 3)Γ(mS − s′S + 1)

Γ(mS + sS + i + 4))

}
. (4.29)

We then evaluate the double integral in (4.10) to obtain the marginal posterior predictive

distributions of the future observations xn+1 and x′m+1 under the treatments tn+1 and t′m+1
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respectively, as Bernoulli distributions, respectively, where

Pr(xn+1 = 1 | tn+1, nE, sE, nS, sS, mE, sE, mS, s′S)

= 1− Pr(xn+1 = 0 | tn+1, nE, sE, nS, sS, mE, sE, mS, s′S)

=

 θ(nE, mE, sE, s′E) if tn+1 = E;

π(nS, mS, sS, s′S) if tn+1 = S

and

Pr(x′m+1 = 1 | t′m+1, nE, sE, nS, sS, mE, sE, mS, s′S)

= 1− Pr(x′m+1 = 0 | t′m+1, nE, sE, nS, sS, mE, sE, mS, s′S)

=

 θ′(nE, mE, sE, s′E) if t′m+1 = E;

π′(nS, mS, sS, s′S) if t′m+1 = S.
(4.30)

These marginal predictive distributions are required for computing the expected utilities of

stopping at any stages n and m. Suppose n = m = 0. Constructing the proposed stopping

rules τ p and τ ′p as outlined in the previous section, based on the assumed prior in (4.19) and

the assumed utility function, we obtained the values u∗ = 0.5757 and u′∗ = 0.5728 as the

respective estimates of the expected utilities corresponding to the pairs of decisions (0, 1) and

(1, 0). At the initial stage of the related trial design with no accumulated data the predictive

probability of success is equal to 2
3

for any given treatment in trial 1 and 1
3

for any given

treatment in trial 2. Therefore, by equation (4.3), the maximum expected utility of stopping

both trials is obtained as 0.5200. Given that min(u∗, u′∗) > 0.5200, both τ p and τ ′p indicate

the decision to continue. In other words, the pair of decisions (0, 0) is the estimate of the

optimal sequential decisions. We note that there are no exact values or past estimation of

the expected utilities with which we can compare our estimates. We justify our estimation

by evaluating our trial design’s operating characteristics in the next section.



52 CHAPTER 4. RELATED TRIALS

4.7 Operating Characteristics

We evaluate our proposed sequential trial design for related trials by investigating its operat-

ing characteristics under fixed values of success probabilities θ, π and θ′, π′ of the experimental

and standard treatments in trials 1 and 2 respectively. We study our trial design under six

different scenarios and summarize the results obtained in each scenario by reporting, for

each trial, the fixed success probabilities of treatments and the average number of patients

assigned to each treatment in a table. Under each scenario we draw 1000 simulations of the

possible outcomes of the entire trial and compute the average number of patients assigned

to each treatment in both groups. In all scenarios, we let the utilities v and v′ be as defined

in the previous example, the joint priors p(θ, θ′) and p(π, π′) be as given 4.19 and set the

maximum number of patients per trial at N = 30.

Scenario 1 represents a situation where both treatments are equally efficacious i.e. the two

treatments do not differ. The trial stopped with averages of 25.49 and 21.31 patients in

trials 1 and 2 respectively and according to column Pt the two treatments were approxi-

mately equally preferred. In the second scenario the standard treatment is superior to the

experimental treatment in both trials. On average 22.13 and 18.18 patients were observed in

trials 1 and 2 respectively and the standard treatment in both trials had a high probability

of preference (0.87 and 0.84 respectively). Scenario 3 represents a situation where the exper-

imental treatment is more effective than the standard in both trials. We observed 23.74 and

14.19 patients in trials 1 and 2 with more preference given to the experimental treatment.

Scenarios 4 and 5 correspond to cases where the experimental treatment is superior to the

standard treatment in trial 1 and vice versa in trial 2. In scenario 4 averages of 25.40 and

21.20 patients were observed while in scenario 5 we have 24.08 and 21.53 patients observed

in trials 1 and 2 respectively with the higher average of patients assigned to the superior

treatment. Scenario 6 represents a situation where the two treatments are equally efficacious

in trial 1 while in trial 2 the experimental treatment is superior. The two trials stopped with
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averages of 23.07 and 20.22 patients respectively.

Scenario 1

Trial 1 Trial 2

Trt ñt St.dev θt Pt Trt ñt St.dev θt Pt

E 13.24 10.37 0.6 0.53 E 10.97 9.19 0.3 0.50

S 12.24 9.91 0.6 0.47 S 10.34 8.55 0.3 0.50

ñ 25.49 4.27 21.31 5.77

Scenario 2

Trial 1 Trial 2

Trt ñt St.dev θt Pt Trt ñt St.dev θt Pt

E 6.64 8.21 0.5 0.13 E 6.02 7.69 0.2 0.16

S 15.78 7.33 0.7 0.87 S 12.05 5.97 0.4 0.84

ñ 22.13 5.89 18.18 5.92

Table 4.1: Operating characteristics for related trials. In all tables under each trial, E and S

denote treatments, the second column ñt indicates the average number of patients assigned to

each treatment, the third column St. dev. represents the corresponding standard deviation,

θt is the assumed true success probability and Pt is the probability of preferring a given

treatment to the other on stopping. See Appendix B for a relevant detailed interpretation

of operating characteristics.
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Scenario 3

Trial 1 Trial 2

Trt ñt St.dev θt Pt Trt ñt St.dev θt Pt

E 21.96 5.99 0.7 0.98 E 11.69 4.92 0.6 0.95

S 1.77 3.22 0.3 0.02 S 2.50 5.65 0.2 0.05

ñ 23.74 5.22 14.19 5.22

Scenario 4

Trial 1 Trial 2

Trt ñt St.dev θt Pt Trt ñt St.dev θt Pt

E 15.79 9.29 0.7 0.69 E 7.58 8.46 0.2 0.22

S 9.61 10.27 0.5 0.31 S 13.62 7.78 0.4 0.78

ñ 25.40 4.16 21.20 5.79

Scenario 5

Trial 1 Trial 2

Trt ñt St.dev θt Pt Trt ñt St.dev θt Pt

E 10.29 10.28 0.5 0.28 E 14.15 8.13 0.4 0.78

S 13.80 8.33 0.7 0.72 S 7.35 8.27 0.2 0.22

ñ 24.08 5.18 21.53 5.48

Table 4.2: Continuation of table 4.1, scenarios 2, 3, 4 and 5. See Appendix B.
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Scenario 6

Trial 1 Trial 2

Trt ñt St.dev θt Pt Trt ñt St.dev θt Pt

E 14.19 9.83 0.7 0.60 E 13.71 7.83 0.4 0.81

S 8.88 9.37 0.7 0.40 S 6.52 8.04 0.2 0.19

ñ 23.07 5.07 20.22 5.87

Table 4.3: Continuation of table 4.1, scenario 6. See Appendix B.

We next evaluate the operating characteristics of our related trial design to investigate if at

some given stages continuing one of the two trials contributes to learning about the other.

We let 0.7, 0.4 and 0.2 be the assumed true values of the success probabilities θ, θ′ and π′

of the experimental treatment in both trials and that of the standard treatment in trial 2

respectively. Then, for each of the values 0.3, 0.4, 0.5, 0.7 and 0.8, taken as the assumed

true success probability of the standard treatment in trial 1, we simulate 1, 000 possible

observations of the entire trial and give a similar tabular report. This scenario corresponds

to the case where no more patients are admitted to trial 2 while trial 1 continues with

patients allocated to the standard treatment S. We observe that for the first three values

taken in ascending order and close to π′ = 0.2, the assumed true success probability of

the standard treatment in trial 2, the average number of patients assigned to the standard

treatment increases in both trials and is higher in trial 2. This trend does not continue for the

remaining two values which are distant from π′ = 0.2. This is because, when the assumed

values of success probabilities of the standard treatment in both trials are taken close to

each other, the resulting marginal posterior densities are close and overlap with each other

at the tails and hence depend on each other. However, when the two values of the assumed

true success probabilities of the standard treatment in both trials differ by a big margin the

resulting marginal posterior densities will be too apart to overlap at the tails and hence,

apart from satisfying the initial condition that π′ < π, do not depend on each other. In this

case changing the assumed true value of success probability in one trial does not influence
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the other and the two trials would continue as if they were two separate trials. Consequently,

if the joint priors for the success probabilities p(θ, θ) and p(π, π′) are selected in such away

that at any stages of the trials the respective posterior densities are close enough that they

overlap at the tails, then by continuing one of the two trials the proposed trial design permits

us to learn about the other.

π = 0.3

Trial 1 Trial 2

Trt ñt St.dev θt Pt Trt ñt St.dev θt Pt

E 20.51 6.06 0.7 0.98 E 13.46 6.72 0.4 0.86

S 2.30 4.24 0.3 0.02 S 5.15 7.46 0.2 .14

ñ 22.81 5.03 18.61 5.92

π = 0.4

Trial 1 Trial 2

Trt ñt St.dev θt Pt Trt ñt St.dev θt Pt

E 19.77 6.56 0.7 0.96 E 13.13 6.86 0.4 0.85

S 3.54 5.71 0.4 0.04 S 5.81 8.03 0.2 0.15

ñ 23.31 4.94 18.94 6.03

Table 4.4: Operating characteristics. In all tables the assumed true values of θ, θ′ and π′ are

fixed to 0.7, 0.4 and 0.2 respectively. The assumed true value of π is varied as shown in the

five tables. Note how the number of patients assigned treatment S in trial 2 increases as π

departs from π′ = 0.2.
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π = 0.5

Trial 1 Trial 2

Trt ñt St.dev θt Pt Trt ñt St.dev θt Pt

E 18.52 7.67 0.7 0.89 E 13.65 7.13 0.4 0.83

S 5.00 7.66 0.5 0.12 S 5.60 7.50 0.2 0.17

ñ 23.52 4.96 19.24 5.84

π = 0.7

Trial 1 Trial 2

Trt ñt St.dev θt Pt Trt ñt St.dev θt Pt

E 14.19 9.83 0.7 0.60 E 13.71 7.83 0.4 0.81

S 8.88 9.37 0.7 0.40 S 6.46 7.79 0.2 0.19

ñ 23.07 5.07 20.22 5.87

π = 0.8

Trial 1 Trial 2

Trt ñt St.dev θt Pt Trt ñt St.dev θt Pt

E 12.29 10.35 0.7 0.45 E 14.10 8.27 0.4 0.8

S 9.58 8.55 0.8 0.55 S 7.09 8.47 0.2 0.20

ñ 21.87 5.30 21.17 5.96

Table 4.5: Continuation of table 4.4 for π = 0.5, 0.7 and 0.8
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We now investigate more about our two related trials by evaluating the operating character-

istics of two separate trial designs. Suppose that the success probabilities of any treatment

in the two trials are independent apriori, and have a common uniform distribution over over

the interval [0, 1]. We fixed the assumed true success probabilities in each trial as in scenario

3 in table 4.2 and obtained the results in the following table.

Trial 1 Trial 2

Trt ñt St.dev θt Pt Trt ñt St.dev θt Pt

E 13.86 5.90 0.7 0.94 E 14.86 5.97 0.6 0.96

S 3.41 6.16 0.3 0.06 S 3.10 4.93 0.2 0.04

ñ 17.27 5.35 17.97 5.34

Table 4.6: Operating characteristics: Two separate trials

Compared to the results in scenario 3 in table 4.2, we observe that in the related trials design

fewer patients are assigned to the treatment with lower efficacy rate with a high precision.

In scenario 3, an average of 1.85 patients were assigned to treatment S with a standard

deviation of 3.35 while when the trials are separate 3.41 are assigned to S with a standard

deviation of 6.16. Also we observe that when the two trials are considered separate almost

equal number of patients from the two groups are used while in the related trials design more

patients from the group with a milder condition of the disease are used.

4.8 Discussion

In this chapter, we have considered approximating the optimal stopping rules of two related

trials by proposing two novel stopping rules, τ p and τ ′p, whose construction is based on

the optimal stopping rule of a single-arm trial obtained by Backward Induction. Just as in

the previous chapter, the single-arm conversion provides a means of selecting some of the

branches of the tree diagram in figure 4.1, along which the approximate expected utility
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is calculated beginning at the end of the trial and working backwards. The study of the

operating characteristics in section 4.4 shows that our proposed trial design allows early

stopping, conforms with the assumed order of superiority of the treatments in both trials

and allows learning about one trial when patient entry is confined to the other trial. Suppose

at some paired stages both trials continue according τ p and τ ′p, and that at any future stages

there will be patients available for admission. We expect that data that we observe from this

trial that continues will make the other trial stop without any admission of more patients

and in the event that only one of the two trials stops, then the other will be conducted with

an optimal stopping rule.

Our proposed trial design is not restricted to the utility function that we have used here and

may be implemented with any other utility function that is deemed suitable. We made a

change in the utility function in (4.1) such that v(t, 0) = v′(t, 0) = 0.3 and v(t, 1) = v′(t, 1) =

1 and a repeat of scenario 3 in table 4.2 gave the results as in table 4.7.

Trial 1 Trial 2

Trt ñt St.dev θt Pt Trt ñt St.dev θt Pt

E 21.75 6.22 0.7 0.98 E 11.76 4.85 0.6 0.96

S 1.82 3.51 0.3 0.02 S 2.33 5.22 0.2 0.04

ñ 23.56 5.45 14.09 5.04

Table 4.7: Scenario 3: Sensitivity analysis

We also repeated scenarios 1 and 5 each with there different changes of the utility function

and our results changed minimally, indicating that our proposed design is not sensitive to

changes in the utility function. We, therefore, conclude that our proposed stopping rules

have attractive properties as approximation of the optimal stopping rules for the related

trials.

We remark that, we have used the family of joint prior densities in (4.16) purposely because
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it meets our objective of the study; consequently, the ordering restriction may be removed

and any other joint densities may be assigned to the unknown success probabilities in some

way.

In each scenario or in the case of sensitivity analysis, the table that we report is a sum-

mary of the 1, 000 simulations of the entire trial and a more detailed analysis may be

done to understand them more. Simulations for scenarios 1, 3 and 5 and a software writ-

ten in R language used to generate them are available in http : //www.cimat.mx/ ∼

jac/material/thesisOrawo.zip.



Chapter 5

One-arm Clinical Trial with

Continuous Response

5.1 Introduction

Clinical trials where patient response is continuous are common in practice. In such trials

a continuous response would represent, for instance, time to recovery of a patient, time

to occurrence of some adverse event, tumour size, blood pressure or concentration of some

chemical in the blood or urine, after being treated by any two competing treatments. If the

objective of a trial is to compare the mean responses of two treatments, then the normal

model is the most popular. Whitehead and Jones (1979), Freedman, Lowe, and Macaskill

(1984), Carlin et al. (1998) and Brockwell et al. (2003) are a few examples of single-arm or

double-arm clinical trials where patient response have been considered normal.

In this chapter we use a numerical method known as ‘gridding’ to implement a Bayesian

sequential design for a one-arm clinical trial comparing an experimental treatment E with

61



62 CHAPTER 5. ONE-ARM CLINICAL TRIAL WITH CONTINUOUS RESPONSE

a standard treatment S, where patient response is normal. We note that the gridding

approximation that we do here can applied to a double-arm clinical trial except for the

complex case when the variances of the responses of the two treatments are unknown and

unequal. Here we use the exact predictive probabilities to obtain the gridding approximation

unlike in Brockwell et al. (2003) where a simulation method is used.

In section 2, we describe the trial design. Section 3 presents our gridding approximation.

Illustrative examples are considered in section 4 and we end the chapter by a discussion in

section 5.

5.2 The trial design

We describe a Bayesian sequential design for a one-arm clinical trial comparing an experi-

mental treatment E with a standard treatment S. We assume that under treatments E and

S the patient responses are x|t = E ∼ N(µE, λE) and x|t = S ∼ N(µS, λS) respectively,

where µS and λS are known. Suppose a and b are known constants, we define the utility,

denoted by v(t, x), of making an observation x under treatment t as

v(x, t) = a + bx. (5.1)

We assume that a large patient response under any treatment in the course of the trial

suggests superiority of the treatment. Therefore we assume that b > 0. As in the previous

chapters, we let N denote the maximum number of patients enrolled in the trial and allow

continuous perusal of the accumulating data at N interim stages. At stage n < N of the

trial we have to decide whether to continue to next stage n+1 or not. Suppose from the first

n patients we have the sequence of observations xn = (x1, x2, . . . , xn). If the trial stops at

stage n, we propose the utility function u(dn = 1, tn+1, tn,xN+1, v) for the entire trial given
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in (2.2) with ti = E for all i = 1, 2, . . . , n. i.e

u(dn = 1, tn+1, tn,xN+1, v) =

αv(tn+1, xN+1) +
(1− α)

N

{
n∑

i=1

v(ti, xi) +
N∑

i=n+1

v(tn+1, xi)

}
.

The objective is to obtain the optimal sequential decision at any stage of the trial by max-

imizing the expected utility. The expected utility, denoted by Un(dn = 1, tn+1, tn,xn), of

stopping the trial with treatment tn+1 is found as

Un(dn = 1, tn+1, tn,xn) = E{u(dn = 1, tn+1, tn,xN+1, v)}, (5.2)

where the above expectation is with respect to future observations xn+1, xn+2, . . . , xN+1.

Hence the more effective treatment, denoted by t∗n+1, is obtained by maximizing the above

expected utility over {tn+1 = S, E}. If we assume that the future observations are indepen-

dent and identically distributed random variables, then analogous to the expected utility in

(2.4) the above expected utility is evaluated as

Un(dn = 1, tn+1, tn,xn) = (1− α)
n∑

i=1

v(ti = E, xi) + (5.3)

×
∫

(α + (1− α)
N − n

N
)v(tn+1, x)p(x |, tn+1,xn)dx.

If, as before, we let Un(dn = 0, tn+1, tn,xn) denote the expected utility of continuing, then

the maximum expected utility is given by

U∗
n(tn+1, tn,xn) = max

dn=0,1
{ max

tn+1=S,E
{Un(dn, tn+1, tn,xn)}}. (5.4)

According to the backward induction method the expected utility of continuing the trial is

Un(dn = 0, tn+1, tn,xn) =

∫
U∗

n+1(tn+1,xn+1)p(xn+1 | tn+1,xn)dx (5.5)

where p(xn+1 | tn+1,xn) is the predictive density of xn+1 given the observed data xn. We

note that the implementation of backward induction as in the previous chapters is not
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possible since the number of possible future sequences of the continuous observations will

be infinite. We therefore develop, in the following section, a numerical approximation to

backward induction based on a discretization of the sufficient statistics for the unknown

parameters.

5.3 Numerical approximation of the optimal decision

We present a numerical procedure known as “gridding”(see Brockwell and Kadane, 2003

and Berry and Chi-Hsiang, 1988) for approximating the optimal sequential decision at any

interim stage n of the clinical trial described above. We consider two cases; first where the

patient response under the experimental treatment E is normal with precision λE assumed

known and second when λE is unknown.

5.3.1 The case of known precision

Suppose we have the observations xn = (x1, x2, . . . , xn) from the first n patients, with xi |

t = E ∼ N(µE, λE). We assume that λE is known and that the prior is µE ∼ N(µ0, λ0).

The posterior distribution of µE conditioned on the observed data xn is normal, with mean

µn = µ0λ0+nλE x̄n

λ0+nλE
and precision λn = λ0 + nλE. We note that the sample mean x̄n is the

sufficient statistic for the posterior distribution of µE. By evaluating the integral
∫

f(xn+1 |

µE)p(µE | tn,xn)dµE we obtain the posterior predictive distribution of a future observation

xn+1 as normal, with mean µn and precision λEλn

λn+λE
. To approximate the optimal sequential

decision at any stage n we proceed as follows.

We construct a grid in the real line over which the summary statistic takes values. We

choose two values as the lower and the upper grid bounds qL and qU respectively. We
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qG-1 qG=qUqL=q0 q1 qi+1 qi µS… … qj+1 …

Figure 5.1: The grid points on the real line.

then make G subdivisions (qi, qi+1), i = 0, 1, . . . , G of the interval (qL, qU) using quantiles

of the normal distribution N(µS, λS), including the mean µS with q0 = qL and qG = qU as

indicated in figure 5.1. Suppose that µS corresponds to the quantile marked qj. We use

Q to denote the set Q = {q0, q1, . . . , qG} of grid points. Since our interest is to investigate

the effectiveness of treatment E relative to treatment S by determining if µE > µS, we

approximate the distribution of the continuous sufficient statistic at any future stage by a

discrete distribution defined on a grid of points as follows. Suppose the trial is at stage n.

We note that for any given value x̄n ∈ Q, the value of the sample mean x̄n+1 at the next

stage may fall in any of the G+2 subdivisions of the real line. Suppose that x̄n = qk and that

y(n+1,k) denote the discrete random variable whose distribution approximates the continuous

distribution of x̄n+1. Then y(n+1,k) assumes values over the grid as follows.
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If x̄n+1 ≤ qL, y(n+1,k) = qL;

else if x̄n+1 ∈ [qi, qi+1] and i ≤ j − 1, y(n+1,k) = qi+1;

else if x̄n+1 ∈ [qj−1, qj+1], y(n+1,k) = µS;

else if x̄n+1 ∈ [qi, qi+1] and i ≥ j + 1, y(n+1,k) = qi;

else y(n+1,k) = qU , (5.6)

where i = 0, 1, . . . , j− 2, j +1, . . . , G. Suppose that, for each z = 0, 1, . . . , G, the probability

that y(n+1,k) = qz denoted by pn+1(k, z) is computed using the normal predictive probability

of a future observation xn+1 at stage n + 1 mentioned above as follows:

pn+1(k, z) =



Pr[x̄n+1 ∈ (qz−1, qz) | x̄n = qk] if z < j and z 6= 0;

Pr[x̄n+1 ∈ (qz, qz+1) | x̄n = qk] if z > j and z 6= G;

Pr[x̄n+1 ∈ (qj−1, qj+1) | x̄n = qk] if z = j;

Pr[x̄n+1 ≤ qz) | x̄n = qk] if z = 0;

Pr[x̄n+1 ≥ qz) | x̄n = qk] otherwise.

(5.7)

If we represent the data by the sufficient statistic x̄n = 1
n

∑n
i=1 xi, we can evaluate the

expected utility of stopping, Un(dn = 1, tn+1, tn, x̄n = qk), in (5.3) for any grid point qk ∈ Q

at any stage n. Using the discrete distribution outlined above we approximate the expected

utility of continuing in 5.5 as

Ûn(dn = 0, tn+1, tn, x̄n = qk) =
G∑

z=0

U∗
n+1(tn+1, x̄n+1 = qz)pn+1(k, z). (5.8)

We note that at the last stage N , where the trial must stop, we have for each qk ∈ Q, k =

0, 1, . . . , G

U∗
N(tN , x̄N = qk) = max

t=S,E
{UN(dN = 1, tn+1, tN , x̄N = qk)}. (5.9)

Then, moving one step backwards we apply (5.8) to estimate ÛN−1(dN−1 = 0, tN−1, x̄N−1 =

qk). Working backward in that manner yields Ûn(dn = 0, tn, x̄n = qk) for earlier stages

n = N − 2, . . . , 1, 0.
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5.3.2 The case of unknown precision

We now outline the above numerical approximation of the optimal sequential decision at any

stage n considering patient observations xn = (x1, x2, . . . , xn) which are N(µE, λE) with µE

and λE both unknown. Suppose we assume

λE ∼ Γ(α0, β0) and µE | λE ∼ N(µ0, k0λE) (5.10)

where α0 > 0, β0 > 0, µ0 and k0 > 0 are constants. The joint prior density p(µE, λE)

corresponds to the normal-gamma density, denoted by Ng(µE, λE|µ0, k0, α0, β0), which is a

conjugate prior for the normal likelihood

l(µE, λE|xn) ∝ λ
n/2
E exp{−λE

2
[ns2 + n(x̄n − µE)2]} (5.11)

where ns2 =
∑n

i=1(xi − x̄n)2. Hence the joint posterior distribution p(µE, λE|xn) of µE and

λE also has a normal-gamma density, Ng(µE, λE|µn, kn, αn, βn), where

µn =
k0µ0 + nx̄n

k0 + n

kn = k0 + n

αn = α0 +
n

2

βn = β0 +
1

2
ns2 +

1

2
(k0 + n)−1k0n(µ0 − x̄n)2. (5.12)

It is clear that the two dimensional summary statistic (x̄n, s
2) is sufficient for the parameter

vector (µE, λE) given the data xn. Given that xn+1 ∼ N(µE, λE), the posterior predictive

distribution of a future patient observation xn+1 at stage n + 1 is obtained, by evaluating

the integral
∫ ∫

f(xn+1|µE, λE)p(µE, λE|xn)dµEdλE. The result is a student’s t distribution,

denoted by st(µn, φn, wn), where

µn =
k0µ0 + nx̄n

k0 + n
, φn = (k0 + n)(k0 + n + 1)−1(α0 +

n

2
)β−1

n and wn = 2α0 + n. (5.13)

Suppose we let sn =
∑n

i=1 x2
i

n
. Since s2 = sn − x̄2

n, we may use (x̄n, sn) as the joint sufficient

statistics for (µE, λE). We prefer to use the sample mean sum of squares instead of sample
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variance, s2, because it is easier to evaluate a probability statement about the future mean

sum of squares sn+1 using the predictive posterior distribution of the future observation xn+1

given the observed sample mean x̄n. Besides that, it is simpler than s2. We approximate

the optimal sequential decision based on a two dimensional sufficient statistic as follows.

We construct a grid in the space R ×R+ over which the sufficient statistic, (x̄n, sn), takes

values. As in the previous section, we start by choosing the lower and the upper grid bounds,

denoted by qh
L and qh

U with qh
L < qh

U for h = 1, 2 for the values of x̄n and sn respectively. Let

Qh = {qh
0 , qh

1 , . . . , qh
G} be sets of values corresponding to the quantiles of the distributions of

the random variables X|t = S and X2|t = S respectively. We note that values in Q1 are

chosen in the same way we choose grid points in Q in the previous section and while for

the set Q2 we may do the same or replace the q2
i ’s by the mid points of every subdivision

(q2
i , q

2
i+1). The set of grid points (q1

i , q
2
l ) ∈ Q1 × Q2, i, l = 0, 1, . . . , G is the support of

the discrete distribution approximating the predictive distribution of continuous sufficient

statistic at any future stage.

Suppose the trial is at stage n. Given that (x̄n, sn) = (q1
i′ , q

2
l′) for some i′, l′ = 0, 1, . . . , G,

we let the pair (y1
(n+1,i′), y

2
(n+1,l′)) be the bivariate discrete random variable, defined on the

grid Q1 × Q2, whose distribution approximates that of a future continuous observation

(x̄n+1, sn+1) at the next stage . This approximation is such that if the future observation

(x̄n+1, sn+1) lies in any subdivision of R×R+, then the pair of values (a grid point) assumed

by (y1
(n+1,i′), y

2
(n+1,l′)) is found by assigning values to y1

(n+1,i′) and y2
(n+1,l′) in Q1 and Q2 respec-

tively, as in (5.6). Hence we have that to every subdivision there corresponds a grid point,

a value of (y1
(n+1,i′), y

2
(n+1,l′)), or vice versa. The probability that (y1

(n+1,i′), y
2
(n+1,l′)) assumes a

grid point (q1
i , q

2
l ) given that (x̄n, sn) = (q′1i , q′2l ) , denoted by pn+1(i, l, i

′, l′), is equal to the

predictive probability that the future observation (x̄n+1, sn+1) lies in the subdivision that

corresponds to (q1
i , q

2
l ) and, may be computed using the above stated student’s t predictive

probability density. Hence for each grid point (q1
i , q

2
l ) ∈ Q1×Q2 at any stage n we calculate

the expected utility of stopping Un(dn = 1, tn+1, tn, x̄n = q1
i , sn = q2

l ) and approximate the
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expected utility of continuing as

Ûn(dn = 0, tn+1, tn, x̄n = q1
i′ , sn = q2

l′) =

G∑
i=0

G∑
l=0

U∗
n+1(tn+1, x̄n+1 = q1

i , sn+1 = q2
l )pn+1(i, h, i′, l′). (5.14)

As in the previous subsection, we apply backward induction to compute Ûn for earlier stages

n = N − 1, N − 2, . . . , 1, 0.

5.4 Examples

We consider two examples to illustrate our proposed numerical approximation of the optimal

sequential decision at any stage of a one-arm clinical trial.

5.4.1 Example 1: the case of known precision

Suppose we consider a one-arm clinical trial design described in section 5.1 where the patient

observation is x|t = E ∼ N(µE, λE) with λE known. For the purpose of illustration we set

N = 20, a = 1, b = 2, λE = λS = 1.2−1 and µS = 2.5. Also we assume that the prior is

µE ∼ N(2.7, 1.8−1). We recall that at any given stage n of the trial the posterior predictive

distribution of a future observation xn+1 given past data is normal with mean µn = nλE x̄n+µ0λ0

nλE+λ0

and precision λEλn

λn+λE
where λn = nλE + λ0. Hence the expected utility of stopping in (5.3)

becomes

Un(dn = 1, tn+1, tn, x̄n) =
1− α

N
n(a + bx̄n) + {α + (1− α)

N − n

N
}(a + bµ), (5.15)

where

µ =

 µS if tn+1 = S;

µn if tn+1 = E.
(5.16)
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We let the lower and upper grid bounds qL and qU be 5% and 95% quantiles of the distribution

N(2.5, 1.2−1) respectively. The interval (qL, qU) is then subdivided by 89 quantiles of the

same normal distribution giving a total of G = 91 grid points . Computing the approximate

expected utility Ûn(dn = 0, tn+1 = E, tn, x̄n) as described in subsection 5.2.1 for every yk ∈ Q

at any future stage we obtain the approximate stopping rule given in figure 5.2.

5.4.2 Example 2: the case of unknown precision

We now take a second example to illustrate our numerical approximation of the optimal

sequential decision in one-arm trial design where x|t = E ∼ N(µE, λE) with both parameters

unknown. Again for the purpose of illustration we assume in this case that N = 12, x|t =

S ∼ N(2.5, 1.2−1) and assign the prior probability density

λE ∼ Γ(1.2, 1) and µE|λE ∼ N(2.3, λE).

The expected utility of stopping remains the same as in (5.15) except that µn is defined as

in subsection 5.2.2 (we choose k0 = 1).

For purpose of this example we construct both the sets Q1 and Q2 by the same way we

construct Q in subsection 5.2.1, and use the grid parameters

q1
L = 0.6982

q1
U = 4.3018

q2
L = 0.5063

q2
U = 0.19.0358

G = 91.

Hence applying backward induction as outlined in subsection (5.2.2) we compute the ap-

proximate expected utility Ûn(dn = 0, tn+1, tn, x̄n, sn) for every grid point in Q1 × Q2 at
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Figure 5.2: Stopping rule: the green, red and yellow regions indicate the decisions to stop

with treatment E, continue and stop with treatment S respectively
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any future stage. At the initial stage, n = 0, the value of the expected utility of stopping

in (5.15)is equal to 2.5 and the approximated expected utility of continuing was obtained

as 4.828. Hence by our approximation the decision is to continue to the next stage. The

resulting approximate stopping rule for n ≥ 1 is given in the figures 5.3 through 5.14.
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Figure 5.3: Stopping rule: n = 1. Stopping rule: In figures 5.3 through 5.14, the green, red

and yellow regions indicate the decisions to stop with treatment E, continue and stop with

the standard treatment respectively. The light blue region represent impossible case where

x̄n > sn.
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Figure 5.4: Stopping rule: n = 2
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Figure 5.5: Stopping rule: n = 3
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Figure 5.6: Stopping rule: n = 4
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Figure 5.7: Stopping rule: n = 5
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Figure 5.8: Stopping rule: n = 6
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Figure 5.9: Stopping rule: n = 7
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Figure 5.10: Stopping rule: n = 8
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Figure 5.11: Stopping rule: n = 9
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Figure 5.12: Stopping rule: n = 10
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Figure 5.13: Stopping rule: n = 11
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Figure 5.14: Stopping rule: n = 12
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We describe the process of decision making at a given stage of the trial as indicated by the

shape of our stopping rule as follows. We consider figure 5.8 which corresponds to stage

n = 6 of the trial and represents the true shape of our stopping rule. Let the value of sn

be fixed at around 12, for instance, and increase the value of x̄n starting from the lowest.

We note from the relation s2 = sn − x̄2
n that, with sn kept fixed, increasing x̄n decreases the

sample variance. For the first interval of small values of x̄n the trial continues because the

variation is big enough to guarantee observing a value x̄n+1 close to µs at the next stage. As

we ascend we encounter a second interval of higher values of x̄n where the variance is too

small to enable reaching anywhere near µS and hence the trial stops. Once we are near but

below µS the trial continues again due to the fact that the variation, although small, may

enable observing a value close to µS. Passing µS, the trial still continues over an interval of

values of x̄n for which the variation is small but may enable observing a value of x̄n+1 below

µS. We finally encounter the last interval where the trial stops because the variation is so

small that chances are high that we observe values of the sample mean greater than µS for

a number of consecutive future interim stages.

5.5 Discussion

We have used exact predictive probabilities to obtain gridding approximation in a one-arm

clinical trial with normal response. Our approach looks more reasonable and does not need a

huge number of grid points to obtain smooth stopping boundaries as indicated in the figures

in the previous section. The trial design that we have considered here is such that interim

analysis is carried out after every patient has been treated and assessed. Computationally,

this may be cumbersome for the case of unknown precision when the number of patients

enrolled in the trial is big. This problem can be avoided by allowing patients to enter in a

group at any stage of the trial (see Pocock, 1977).
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Our approach is restricted to conjugate normal and normal-gamma prior densities for the two

cases that we have considered, respectively. Making slight changes of the the prior densities,

we computed again the stopping boundaries for both cases and observed minimal differences.

We noted that for the case of known precision, a huge decrement in the precision caused

minimal changes on the stopping boundaries compared to example 1 is subsection 5.4.1. This

was due to that fact that the information contained in the prior changes minimally. While

a big increase in the precision causes a big change on the stopping boundaries. This is due

to the fact that the predictive density becomes more concentrated about the mean µS = 2.5

and needs a very small or big observation in order to move away from it. Figure 5.15 is the

result of repeat example 1 is subsection 5.4.1 with a normal prior µE ∼ N(2.6, 0.2−1) with a

higher precision.

Given that the exact implementation of gridding approximation of the optimal stopping rule

is through the use of the exact predictive probabilities, our approach, save for cases with

extreme computational difficulties, is more efficient than the previous simulation-based ap-

proaches. All the stopping boundaries displayed in this chapter we obtained by a software

written in R and is available from http : //www.cimat.mx/ ∼ jac/material/thesisOrawo.zip.
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Figure 5.15: Stopping rule: the green, red and yellow regions indicate the decisions to stop

with treatment E, continue and stop with treatment S respectively
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Chapter 6

Discussion

This thesis presents approximation of optimal stopping rules for three different types of

clinical trial designs where data are monitored regularly using the Bayesian approach. The

three trial designs include a multiple-arm trial design, a trial design for two related trials

(both with binary responses) and a one-arm trial design with continuous response, discussed

in Chapters 3, 4 and 5 respectively. Our search for approximate stopping rules was moti-

vated by the fact that in general it is impossible to obtain optimal stopping rules by direct

implementation of Backward Induction for any of the three trial designs.

In Chapter 3 we have discussed approximation of the optimal stopping rule for a multiple-arm

trial design by proposing a novel stopping rule, denoted by τ p, using the optimal stopping

rule of a single-arm trial design obtained by Backward Induction. At any stage of the trial

the construction of τ p consists of making a systematic selection of some the branches of

the resulting complex decision tree and then beginning from the end of the trial, working

backwards, the estimate of the expected utility of continuing is obtained. We have considered

numerical examples to provide evidence that τ p approximates the optimal stopping rule

obtained by Backward Induction with a reasonable accuracy. We fail to conduct exhaustive

89
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evaluation of our proposed trial design when the number of treatment arms exceeds two

since the trial design becomes more complex and that there is no previous approximation

work under the same design setting available in the literature. In spite of this, we believe

that the use of τ p will enable more efficient comparison of many new treatments with a

standard treatment in a single trial as compared to conducting a series of trials with at most

two treatment arms. Given that the implementation of Backward Induction for a single-

arm clinical trial design with binary outcomes is simple and fast, the construction of our

proposed stopping rule is simple and hence requires straight forward programming. Further

investigation into the behavior of τ p may provide more information on its accuracy.

Similarly, we have presented a solution in Chapter 4 to a sequential problem involving two

related trials by proposing two stopping rules, denoted by τ p and τ ′p, one for each trial. We

construct the two stopping rules by an original technique such that the value of each stopping

rule at any interim stage depends on data from both trials and hence permits learning about

one trial while patient admission is confined to the other. Although the assessment of our

proposed trial design has been narrowed to studies of the operating characteristics due to the

lack of simple examples and previous approximations in the literature, it is possible that the

performance achieved may be higher than that of conducting two separate trials. Studies of

its operating characteristics with informative joint priors may provide more evidence of its

efficiency. Furthermore, assigning other prior distributions that lead to simple expressions

for posterior distributions will improve computing time and may allow a more exhaustive

study of our proposed stopping rules for the two related trials.

We note that our approach is limited to the assumption that the unknown success probabil-

ities, of treatments within a multiple-arm trial design, are independent; since otherwise the

trial design cannot be converted to a single-arm clinical trial. This also applies to each of the

two related trials. So far we have justified the effectiveness of our proposed stopping rules us-

ing simulated data and the next crucial stage would be to use them to conduct clinical trials

involving real patients. Clinical experts, once convinced with the logic behind the develop-
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ment of these stopping rules, would require that we quantify the error that we might commit

in the course of the trial to see whether it is acceptable or not. For the case a multiple-arm

trial design we may use the results of the comparison in table 3.1 in section 3.3 to find out

the percentage decrease in the expected utility. Also we may establish the mean estimation

bias in all our simulated trials by comparing an estimate of the success probabilities with its

true value (this may be done since the final values of the sufficient statistic are provided for

each trial simulation in http : //www.cimat.mx/ ∼ jac/material/thesisOrawo.zip).

Lastly, we have presented the implementation of Backward Induction using the gridding

method in a single-arm clinical trial design where patient response is normal. We note that,

given that a computer implementation of Backward Induction is only possible to sequential

experiments with discrete outcomes, a gridding method must be employed in a numerical

analysis of sequential experiments with continuous outcome. Our improvement over other

approaches is due to the fact that we obtain the gridding approximation of the expected

utility of continuing using the exact posterior predictive probability distribution of a future

observation. We note that evaluating the gridding approximation of expected utility by

simulation, as has been done in the previous approaches, is equivalent to approximating the

value that we obtain. However, our approach may encounter computational difficulties if the

expected utility depends on a high-dimensional sufficient statistic or when N is large and

many interim looks are considered. Our approach is the restricted to the family of normal

conjugate priors and the existence of a sufficient statistic for the unknown parameters of

interest.

Although we have used some specific prior distributions, proper elicitation of prior distribu-

tions will require working in collaboration with experts who have the initial knowledge about

the unknown success probabilities. Perhaps more importantly, to turn our trial designs into

true applicable protocols, the utility value for any outcome under a given treatment, v(t, r),

will need to be correctly established. This may be done in terms of quality-adjusted life years

(QALY) (see Kaplan, 1995 and Parmigiani, 2002). The value may be determined by asking
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a patient the period of time that he or she considers equivalent to one year in a given health

state. Other alternative methods have calculated QALY’s using preference-based measures

of health related quality of life. These methods have been used in the UK and involve elicit-

ing utilities of various health states from a representative sample of the general population.

The various heath states defined by each of the above methods are valued using the standard

gambling technique. Then based on this data statistical modelling is used to estimate the

utilities for all the health states, (see Kharroubi, Brazier, Roberts and O’Hagan, 2005 and

reference there in ). However, these QALTY of heath states have been done in a handful of

countries and may not be directly applicable to other societies like Mexico.

The utility function u, that we have used throughout this thesis, is not limited to any specific

form by our algorithms. Hence any other utility functions, leading to similar optimal stopping

rules for a single arm trial and is suited to a problem at hand, may be used.

Further investigation may involve studying the approximation of the optimal stopping rules

for multiple-arm clinical trial designs when dependence is introduced among the various

unknown treatment success probabilities.

We conclude by saying that we have provided simple algorithms that permit finding approx-

imate stopping rules with impressive properties, for each of the three trial designs. Use of

more simple examples of these trial designs will enable exhaustive evaluation of these stop-

ping rule. We believe that the evaluation presented in this thesis will be convincing enough

for our proposed trial designs to be tested in real clinical trials.



Appendix A

Notation and Basic concepts

A.1 Bayesian framework

Suppose that we are interested in the values of the k unknown parameters θ = (θ1, θ2, . . . , θk)

and that θ itself is a random variable and has a prior probability distribution denoted by

p(θ). Now suppose we have n observations x = (x1, x2, . . . , xn) whose probability distribution

p(x | θ) depends on the values of the k parameters. Then we have

p(x | θ)p(θ) = p(x, θ)

= p(θ | x)p(x). (A.1)

The conditional probability distribution p(θ | x) is called the posterior probability distribu-

tion of θ given the observed data x and is obtained as

p(θ | x) =
p(x | θ)p(θ)

p(x)
(A.2)

where

p(x) =


∫

p(x | θ)p(θ)dθ if θ is continuous;∑
p(x | θ)p(θ) if θ is discrete,

(A.3)
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and the sum is taken over all possible values of θ. The formula in (A.2) is usually referred

to as Bayes’ Theorem.

Given the observed data x, p(x | θ) is regarded as a function of θ and is called the likelihood.

Noting that p(x) does not depend on θ and thus for a fixed x can be considered constant,

the Bayes formula can be expressed as

p(θ | x) ∝ p(x | θ)p(θ), (A.4)

meaning that the posterior probability distribution of θ given x is proportional to the likeli-

hood times the prior probability distribution. Hence the posterior distribution summarizes

the prior information and the information provided by the observed data about the unknown

parameter θ.

Suppose xn+1 is a future observation independent of xn given θ. Then the predictive distri-

bution of xn+1 is given by

p(xn+1 | xn) =

∫
f(xn+1 | θ)p(θ | xn)dθ. (A.5)

This distribution is usually referred to as the posterior predictive distribution because it

summarizes the information about the likely value of a new observation given the prior and

the data we have observed so far. If no data have been observed the distribution of a future

observation xn+1 given in (A.5) now becomes

p(xn+1) =

∫
f(xn+1 | θ)p(θ)dθ, (A.6)

and is called the prior predictive distribution.

Suppose we have a decision problem where a choice has to be made from a set of available

actions. Let a ∈ A be the class of possible actions. The loss function, denoted by u(a, θ),

quantifies the loss incurred when θ is the true state of nature and we take action a. In
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the light of the data x, our knowledge about θ is represented by the posterior distribution

p(θ | x), which combines the prior knowledge of θ with the information provided by the

data. According to a Bayesian approach, the optimal action is that which minimizes the

expected posterior loss,

U(a) =

∫
Θ

u(a, θ)p(θ | x)dθ. (A.7)

A.2 Notation

• t = E0, E1, . . . , Ek (t = E, S for k = 1): treatments.

• x: patient response.

• v(t, x): utility of observing x after assigning treatment t.

• N: fixed maximum number of patients.

• u: the utility function for entire trial.

• τ : stopping rule.

• U
(τ)
n : the expected utility determined by a stopping rule τ .

• Un: the expected utility.

• dn = 0, 1: the decisions of continuing and stopping respectively.

• U∗
n: the maximum expected utility.

• θj: the success probability of treatment Ej, j = 0, 1, . . . , k.

• πj(θj): the prior distribution of θj.
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A.3 Models for clinical trials with binary responses

Suppose we have a sequential clinical trial design where k experimental treatments E1, E2,

. . . , Ek are compared with a standard treatment E0. Assume that the success probabilities

of the k + 1 treatments, θ0, θ1, . . . , θk, have the prior probability distributions π0(θ0),

π1(θ1), . . . , πk(θk) respectively. Suppose we assume that patient outcome is binary. Let

ti and xi denote the assigned treatment and the the observed response for the ith patient,

i = 1, 2, . . . , N . At any stage n of the trial, we have the sequence of binary observations xn =

(x1, x2, . . . , xn) from the first n patients arising from applying treatments tn = (t1, t2, . . . , tn).

Suppose that we summarize the information contained in (tn,xn) by the sufficient statistic

(s(k), n(k)) with n(k) = (n0, n1, ..., nk) and s(k) = (s0, s1, ..., sk). Suppose for each j we let

Aj = {i : ti = Ej, i = 1, 2, . . . , n} be the set indicating the patients assigned to treatment

Ej, the respective jth components of n(k) and s(k) are given by nj =| Aj | and sj =
∑

i∈Aj
xi

respectively. If we assume that the random variables θ0, θ1, . . . , θk are independent apriori,

then the posterior distribution is given by

π(θ0, θ1, . . . , θk | s(k), n(k)) ∝ f(s(k) | n(k), θ0, θ1, . . . , θk)
k∏

j=0

πj(θj), (A.8)

where f(s(k) | n(k), θ0, θ1, . . . , θk) =
∏k

j=0 θ
sj

j (1 − θj)
nj−sj is the likelihood function. Conse-

quently, the marginal posterior density function for θj, j = 0, 1, . . . , k is obtained as

πj(θj | sj, nj) ∝ θ
sj

j (1− θj)
nj−sjπj(θj). (A.9)

Suppose πj(θj) is a beta probability distribution with parameters αj and βj. We obtain

the marginal posterior density π(θj | nj, sj) in (A.9) as a beta probability density with

parameters αj + sj and βj + nj − sj. Then the posterior predictive distribution of a future

observation xn+1 at the next stage of the trial under treatment tn+1 = Ej is given by
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p(xn+1 | sj, tn+1 = Ej) =

1∫
0

p(xn+1 | θj)πj(θj | sj, nj)dθj. (A.10)

This reduces to

p(1 | sj, tn+1 = Ej) =

1∫
0

θjπj(θj | sj, nj)dθj

= E[θj | nj, sj]

=
αj + sj

nj + αj + βj

and

p(0 | sj, tn+1 = Ej) = 1− αj + sj

nj + αj + βj

. (A.11)

We note that, at any stage n, the posterior predictive success probability of any treatment

tn+1 = Ej is equal to the mean of the marginal posterior distribution of θj.
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Appendix B

Some Considerations on Operating

Characteristics

We note that the tables appearing in sections 3.4, 3.5, 4.6 and 4.7 are summaries of the

full simulations and hence many other things may be done to understand fully the operating

characteristics of our proposed trial designs. For instance, drawing a histogram of the number

of patients assigned to each of the three treatments may help understand more on how

consistent our proposed trial designs are in obeying the assumed order of superiority in

each scenario and allowing for early stopping, over the 1, 000 simulations. The histograms

in figure B.1 correspond to scenario 3 in table 3.2 of section 3.4, where a non informative

beta prior beta(0.5, 0.5) was assigned to each of the unknown treatment success probabilities.

We observe from the first bar of these histograms that the trial stopped with at most five

patients assigned to the less effective treatments E0 and E1 approximately 80% and 70%

of the times, respectively. This is happens with the most effective treatment approximately

30% of the time. According to the order of the assumed true success probabilities of the

three treatments it is easier to get a failure with treatments E0 and E1 than with treatment
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E2, while simulating the trial. Hence the less effective treatments easily loose to the most

effective treatment. Furthermore, there is a possibility that the trial design allocates patients

to only one of the three treatments until stopping without assigning any patient to the other

two; the superior treatment will always be preferred most of the time. This also explains the

high variation reported in the column marked St.dev in other tables and in table B.1. The

histograms also indicate that most of the time more patients were assigned to the superior

treatment.

The histograms in figure B.2 report the simulations obtained from a repeat of scenario 3 in

table 3.2 with informative beta priors in (3.3). Compared to histograms in figure B.1, we

observe a remarkable decrease in the number of simulations for the entire trial where more

than five patients were assigned to the less effective treatments; for all the 1000 simulations

not more than five patients were assigned to the least effective treatment E0. Our proposed

trial design assigns more patients, most of the times, to the most effective treatment with

a high precision as the the corresponding histogram is peaked and concentrated around the

average number of patients assigned to it. Also, we observe by comparing the last bars in

the histograms corresponding to treatment E1 in figures B.1 and B.2 that in this case the

trial stops early most of the time. Similar detailed interpretation may also be done using

the results of the operating characteristics in section 4.7.

Scenario 3

Trt ñt St.dev. θt Pt

E0 5.82 11.64 0.3 0.102

E1 19.47 16.36 0.6 0.689

E2 9.02 14.24 0.4 0.209

ñ 34.31 13.10

Table B.1: Operating characteristics: scenario 3
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Figure B.1: Operating characteristics: histogram of the number of patients assigned to each

treatment in Scenario 3.
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Figure B.2: Operating characteristics: repeat of scenario 3 with informative beta priors,

beta(1.5, 3.5), beta(3, 2) and beta(2, 3).
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